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Abstract 
A simple formula is developed for predicting the maximum squat of a 

displacement ship as it passes through the transcritical speed range. This is given in 
terms of a “maximum sinkage coefficient” which is almost constant across a wide 
range of hull forms. Satisfactory agreement is shown with model test results, and it is 
shown that large stern sinkages in the order of  3 – 6 metres are predicted for frigate 
and destroyer type hulls in shallow calm water. 

Introduction 
Ship squat is the change in vertical position and trim angle of a ship when 

under way, due to the changed water pressure around the moving ship. At low speeds, 
the centre of gravity is displaced downwards, and the ship may trim down by the bow 
(common for full-form ships) or stern (common for fine-form ships). In any case, the 
available underkeel clearance is usually reduced (compared to the static condition), so 
that the ship may be at risk of grounding when under way in shallow water. 

Squat is very sensitive to ship speed, being approximately proportional to the 
square of the speed for low ship speeds. Most large ships, such as bulk carriers and 
containerships, travel in this low-speed range, and hence their squat prediction 
formulae display a near-quadratic speed dependence (see PIANC 1997 for an 
overview of low-speed squat formulations). 

In shallow water, flow around the ship changes markedly when the ship speed 
is close to the natural speed of long waves in shallow water (the “critical speed”). 
Near this speed, wave crests produced by the ship span out almost transverse to the 
ship’s hull, with a generally elevated free surface near the ship’s bow and depressed 
free surface near the stern. Large stern sinkages occur, which are not at all well 
predicted by the low-speed theories.  

The “critical speed” is given by gh , with g the acceleration due to gravity 
and h the undisturbed water depth (e.g. in a depth of 15m, the critical speed is 12 m/s, 
or 24 knots). Most large displacement ships are unable to reach this critical speed, due 
to the large wave resistance at this speed.  However, the critical speed could be 
reached or exceeded by shallow-draft, high-speed ships such as frigates and 
destroyers. Note that smaller planing or semi-planing hulls are strongly affected by 
dynamic pressure beneath the hull, and are not the topic of this article. Catamarans 
also will not be treated in this article, since the important flow interaction between the 
hulls is still being researched. 

For high-speed displacement ships, it has been shown experimentally (Graff et 
al 1964, Millward & Bevan 1986) and computationally (Chen & Sharma 1995, 
Gourlay & Tuck 2001) that the midship sinkage reaches a maximum when the ship 
speed is just below the critical speed, before returning rapidly to near-zero. At the 
same time, the trim is strongly stern-down, so that the ship’s stern suffers a large 
downward displacement, and may be in danger of grounding. As the critical speed is 
passed, the midship sinkage and stern sinkage decrease.



 

Calculations for the maximum predicted midship and stern sinkage in shallow 
open water were shown in Gourlay & Tuck (2001), based on slender-ship shallow-
water theory including wave dispersion. The resulting equations are complicated and 
difficult to solve numerically, so are not suited to routine use. However, it will be 
shown here that these equations can be represented in terms of simple “maximum 
sinkage coefficients” which are almost constant across a wide range of hulls. 

Specifically, the maximum midship sinkage psmax_midshis  and stern sinkage 

max_sterns  will be shown to be represented by 
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where 
    =∇ ship’s volume displacement  
    =L ship’s waterline length 
    =h undisturbed water depth 

The maximum sinkage coefficients have values 
    5.0psmax_midshi ≈C   
    2max_stern ≈C  
over a wide range of hulls. 

Origin of the formulae 
Theoretical basis 

In Gourlay & Tuck (2001), the leading-order effect of dispersion was included 
in slender-body shallow-water theory, to yield expressions for the sinkage force and 
trim moment on a ship travelling at transcritical speeds. Here we will use similar 
expressions, but in a more original form, incorporating the derivative of the section 
area rather than the section area itself. This allows the method to also be used for 
transom stern vessels, by representing the flow past the transom as that past an 
infinitely long cylinder extending downstream from the transom, with cross-section 
identical to the transom. This method for modelling transom sterns is similar to that 
used in Tuck et al (2002) for calculating wave resistance of slender ships. 

Firstly, Fourier transforms are taken of the rate of change of hull section area 
dxdS / and waterline breadth distribution )(xB . 
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The waterline length of the ship is L, with the bow at 2/Lx −=  and stern at 
2/Lx = . 



 

 In a similar manner to Gourlay & Tuck (2001), the vertical force F and bow-
up trim moment M (about midships) are given by  
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where 
    hF  = Froude depth number = (ship speed) / gh  
    ρ  = water density 
The asterisk denotes complex conjugate, and λ  is found (Gourlay & Tuck 2001) from 
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Once the vertical force and trim moment are found, the midship sinkage 
midshipss  and bow-up trim angle θ  can be found by rearranging the hydrostatic 

equilibrium relations (Gourlay & Tuck 2001) to give 
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This is identical to the alternative method of finding the sinkage directly at the 
longitudinal centre of floatation (LCF), and taking moments about the LCF to find the 
trim. 

Numerical method 
Fourier transforms are calculated using Filon quadrature (Abramowitz & 

Stegun 1965), which approximates the input function as a parabola over each 
subinterval, and then integrates the resulting oscillatory integral exactly. The 
integrands in equation (3) die to zero quickly away from 0=k , excepting the 
singularities at 0=λ , which must be integrated analytically. More details on the 
numerical method can be found in Gourlay (2000). 

Form of the solution 
Figure 1 shows midship sinkage, scaled against waterline length, for the 

Taylor A3 hull tested by Graff et al (1964) with 125.0/ =Lh .  
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Figure 1: Midship sinkage, scaled against waterline length, for a Taylor A3 hull with 

125.0/ =Lh  
 

According to the theory, midship sinkage is roughly proportional to the square 
of the speed up to 6.0≈hF , whereupon it increases more quickly and reaches a 
maximum in the order of 0.8% of the shiplength at 0.195.0 −≈hF .This is followed 
by a sharp decrease back to near-zero, where it remains at supercritical speeds 
( 1>hF ). 

 



 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.5

1

1.5

2

2.5

Fh

Tr
im

 (d
eg

)

 

 

Theory
Model tests

 
Figure 2: Stern-down trim, scaled against waterline length, for a Taylor A3 hull with 

125.0/ =Lh  
 

Stern-down trim is predicted to stay near-zero up to 8.0≈hF , whereupon it 
climbs quickly to a maximum of around 2.5° just before 0.1=hF . It then drops down 
to around 1.2° at higher supercritical speeds. 

The main differences in model test results as compared to the theoretical 
predictions are a maximum sinkage at a lower Froude number, negative sinkage at 
slightly supercritical speeds, and a broader, smaller trim peak. As discussed in 
Gourlay & Tuck (2001), transcritical model tests are very sensitive to the presence of 
sidewalls, since these cause soliton waves to be radiated ahead of the model. All of 
the differences between theoretical and model test results are explained qualitatively 
(see Chen & Sharma 1995, Sharma & Chen 2000) by the finite width of the model 
testing tank used in the experiments (around 36 times the model beam). Therefore it 
appears likely that full-scale tests in open water would more closely approximate the 
theoretical predictions. 

The stern sinkage is a combination of midship sinkage and stern-down trim, 
given by 

    θ
2midshipsstern
Lss +=          ( 6) 

with θ  in radians. For the A3 hull at 125.0/ =Lh , the stern sinkage reaches a 
maximum of around 2.8% of the waterline length just before 0.1=hF . Note that, 
since the midship sinkage does not reach a maximum at exactly the same hF  as the 
trim, the combined stern sinkage has to be plotted separately in order to find the 
maximum value. 



 

Dimensional analysis 
The numerical method described for calculating sinkage and trim through the 

transcritical speed range is complicated and time-consuming to program. Because of 
this, it was desirable to express the solution in a dimensionless form, involving 
coefficients which are only weakly dependent on the hull shape and water depth to 
waterline length ratio. 

We know that the midship sinkage and stern sinkage both reach a sharp peak 
just before 0.1=hF , and we are primarily interested in the magnitude of these peaks, 
in order to avoid grounding for a ship passing through the transcritical speed range. 
An asymptotic analysis was carried out around 0.1=hF , but failed to give an accurate 
method for finding the peak sinkage. Instead, dimensional analysis was used to find 
suitable expressions for maximum sinkage, as follows: 
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Table 1: Dimensional analysis of maximum sinkage 



 

We can therefore write 
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introducing the dimensionless coefficients max_sternmax_thetapsmax_midshi ,, CCC  . 
With the dimensions of the output quantities thus chosen, the coefficients will 

be unchanged by stretching of the hull in any direction. This is a result of the slender-
ship linearization, where the ship’s beam and draft are assumed small compared to its 
length. Fortunately, this is generally true for any displacement ship that intends to 
travel at transcritical speeds.  

Also, since we have found the maxima over a range of Froude numbers, the 
coefficients are independent of hF . The coefficients can at most depend on the shape 
of the hull, and the non-dimensional shallowness Lh /  (assumed small).  

Calculations for example hulls 

The maximum sinkage coefficients described above were calculated 
numerically using equations (5) to calculate midshipss , θ  and sterns  over a range of 
Froude numbers, for a particular ship in a particular depth of water. The maximum of 
each of these over the range of Froude numbers gave psmax_midshis , maxθ  and max_sterns . 
The numerically-computed coefficients were then found by rearranging equations (7), 
i.e. 
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Hulls tested 

The list of high-speed displacement hulls tested numerically is shown in Table 
2, along with their block coefficient, longitudinal centre of buoyancy (LCB) and 
longitudinal centre of floatation (LCF). Note that due to the linearization, calculated 
coefficients are independent of the size of the vessel, or length/beam or beam/draft 
ratio. Some of the particulars are calculated from body plans provided and are 
approximate. 

 



 

Hull Block 
coefficient 

LCB aft (% 
of waterline 
length) 

LCF aft (% 
of waterline 
length) 

Taylor standard series A3 hull - 
destroyer type, cruiser stern (Graff et al 
1964) 

0.59 ~0.0 % ~1.8 % 

Taylor standard series B5 hull - 
destroyer type, transom stern (Graff et 
al 1964) 

0.54 ~0.4 % ~4.7 % 

NPL 100A, 150B hulls - round bilge, 
transom stern (Millward & Bevan 1986) 

0.40 ~6.4 % ~8.4 % 

High-speed displacement ship series 
model 1 - fine bow, wide transom (Blok 
& Beukelman 1984) 

0.40 5.0 % 9.2 % 

High-speed displacement ship series 
model 3 - bluff bow, narrow transom 
(Blok & Beukelman 1984) 

0.40 5.2 % 6.8 % 

Wigley hull - simple hull with parabolic 
waterplanes and parabolic sections 
(Shearer & Cross 1965) 

0.44 0.0 % 0.0 % 

Table 2: Relevant particulars of hulls to be tested numerically 

Computed results 
Calculated results for the example hulls are shown in Table 3, for the depth to 

waterline length ratio 10.0/ =Lh . 
 

Hull psmax_midshiC  max_thetaC  max_sternC  
Taylor standard series A3 hull (destroyer 
type, cruiser stern)  

0.62 3.26 2.14 

Taylor standard series B5 hull (destroyer 
type, transom stern)  

0.54 2.80 1.82 

NPL 100A, 150B hulls (round bilge, 
transom stern) 

0.34 2.30 1.34 

High-speed displacement ship series 
model 1 (fine bow, wide transom)  

0.40 2.57 1.54 

High-speed displacement ship series 
model 3 (bluff bow, narrow transom)  

0.40 2.68 1.61 

Wigley hull (simple hull with parabolic 
waterplanes and parabolic sections)  

0.62 3.06 2.05 

Table 3: Calculated maximum sinkage coefficients for example hulls 

In all cases it was found that the maximum midship sinkage and stern sinkage 
both occur in the range 0.195.0 << hF . A sensitivity analysis was performed for 
different values of Lh / , but the coefficients were found to be approximately constant 
over the range of interest 15.0/05.0 << Lh . Note that shallow-water theory loses its 
validity at larger values of Lh / , but in that case a slender ship is not at risk of 
grounding. 



 

Comparison with experimental results 
To date, the author has found no available full-scale data on combined sinkage 

and trim of displacement ships through the transcritical speed range in open water. 
Many model tests have been performed at transcritical speeds, but often the width of 
the tank is not large enough to prevent solitons being radiated. Tank walls have a 
significant effect on the flow at transcritical speeds in shallow water, even when the 
tank width is 20-30 times the model beam. Even without sidewall effect, the large 
difference in Reynolds numbers may cause a discrepancy between model-scale and 
full-scale trim.  

Two sets of model tests will be referred to here. The first (Graff et al 1964) 
tested the Taylor series A3 and B5 hulls. The second (Millward & Bevan 1986) tested 
the NPL 100A and 150B hulls (among others). In Graff et al (1964) the tank was 
around 36 times the models’ beam, and in Millward & Bevan (1986) it was around 20 
times the models’ beam. Note that both sets of tests used a towed rather than a self-
propelled model, which is a further source of discrepancy (mainly for trim) when 
scaling to full scale self-propelled ships. 

Results have been compared in terms of the sinkage coefficients, defined by 
equations (8). The comparisons are shown in Table 4. 

 
Hull 

3L
c ∇

=∀

 

Lh /   psmax_midshiC max_thetaC  max_sternC
 

calculated 0.60 3.24 2.12 Taylor A3  0.0017 0.125 
experimental 0.65 2.50 1.68 
calculated 0.53 2.78 1.80 Taylor B5  0.0017 0.125 
experimental 0.54 1.93 1.36 
calculated 0.30 2.25 1.28 NPL 100A  

 
0.0035 0.167 

experimental 0.43 2.29 1.19 
calculated 0.30 2.25 1.28 NPL 150B 0.0052 0.167 
experimental 0.41 2.03 1.09 

Table 4: Comparison of theory with model test results in a wide tank 

Overall, there is satisfactory agreement between the predicted and 
experimental results. The following points are noted: 
- The magnitude of midships sinkage shows good agreement with the results of 

Graff et al (1964). The A3 and B5 hulls are ideal for the theoretical method used, 
having a low volumetric coefficient ∀c  (i.e. high length/beam and length/draft 
ratios). 

- The maximum trim reported in Graff et al (1964) is significantly less than that 
predicted. As discussed in Gourlay & Tuck (2001), numerical results for a ship in 
a channel (Chen & Sharma 1995) show that channel walls have the effect of 
decreasing the maximum trim. Therefore true open-water test results would likely 
show better agreement than these finite-width test results. 

- The maximum midship sinkage of the NPL hulls is underpredicted by the theory. 
Gourlay & Tuck (2001) showed that the theory underpredicts midship sinkage at 
large values of Lh /  such as this; it is more appropriate to use a finite-depth rather 
than shallow-water theory in this case. 167.0/ =Lh  was the shallowest depth for 
which data were available, but is outside the range of depths for which the ship is 



 

at risk of grounding. In addition, the NPL hulls have a large volumetric coefficient 
and are pushing the limits of slender-ship theory. 

- The theory’s close prediction of maximum trim of the NPL hulls is most likely 
coincidental; the experimental trim is likely to be reduced due to sidewall effect, 
and the predicted trim is likely to be reduced due to the large value of Lh / . 

- The Froude depth number at which the maximum midship sinkage occurred was 
around 0.89 for the Graff et al (1964) results, and around 0.85 for the Millward 
and Bevan (1986) results. This is lower than the predicted range of 0.95-1.0. 
Sharma & Chen (2000) showed that the presence of sidewalls will tend to decrease 
the Froude depth number at which the maximum sinkage occurs.  

Generalizations and examples 
An analysis of the maximum sinkage coefficients shows that the maximum 

midship sinkage coefficient shows some correlation with LCB, while the maximum 
trim coefficient, and hence maximum stern sinkage coefficient, correlates with LCF. 
Little correlation is found with block coefficient, since this is effectively scaled out in 
the dimensional analysis. Length/beam and length/draft ratios are also scaled out 
through the linearization, provided the ship is slender. 

Therefore the following guidelines are offered for choosing coefficients for 
general high-speed displacement hulls. These are given in terms of the position of 
LCB and LCF (% of waterline length). Note that transom stern vessels, with LCB and 
LCF further aft, will tend to have smaller maximum sinkages than cruiser stern 
vessels. 
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Maximum midship and stern sinkage are then given by 

    

max_sternmax_stern

psmax_midshipsmax_midshi

C
Lh

s

C
Lh

s

∇
=

∇
=

       ( 10) 

Clearly it is the maximum stern sinkage which is the limiting factor in avoiding ship 
grounding at transcritical speeds.  

As an example, maximum sinkages have been estimated for a Perry-class 
frigate (FFG7) and Spruance-class destroyer (DD963V) using the above formulae. 
Relevant particulars of these hulls are shown in Table 5. Stern drafts include 
appendages. 

 
 



 

Hull Length btw 
perpendiculars  

Displacement Volume 
displacement 
(salt water) 

Draft 
midships 

Draft 
stern 

LCB LCF 

FFG7  124.4m 4080 tonnes 3980 m3 4.8m 7.0m 2.0% 
aft 

5.9% 
aft 

DD963V  161.2m 9040 tonnes 8820 m3 6.5m 9.0m 2.2% 
aft 

8.0% 
aft 

Table 5: Relevant particulars of Perry-class frigate (FFG7) and Spruance-class 
destroyer (DD963V)  

 
According to equation (9), the correct coefficients to use for both of these 

vessels are psmax_midshiC = 0.6 and max_sternC  = 1.5. 
Calculated maximum sinkages and dynamic drafts for the Perry-class frigate 

in different water depths are shown in Table 6. Dynamic draft is defined as the static 
draft plus the downward sinkage. Maximum sinkage occurs at just below the critical 
speed. 
 
Water 
depth 
(h) 

Critical 
speed 

psmax_midshis  max_sterns  Dynamic 
draft 
midships 

Dynamic 
draft stern 

Underkeel 
clearance 

13.0m 22.0 kts 1.5m 3.7m 6.3m 10.7m 2.3m 
12.0m 21.1 kts 1.6m 4.0m 6.4m 11.0m 1.0m 
11.0m 20.2 kts 1.7m 4.4m 6.5m 11.4m -0.4m 

Table 6: Example calculations for Perry-class frigate (FFG7)  

 
Calculated maximum sinkages and dynamic drafts for the Spruance-class 

destroyer in different water depths are shown in Table 7. 
 
Water 
depth 
(h) 

Critical 
speed 

psmax_midshis  max_sterns  Dynamic 
draft 
midships 

Dynamic 
draft stern 

Underkeel 
clearance 

16.0m 24.4 kts 2.1m 5.1m 8.6m 14.1m 1.9m 
15.0m 23.6 kts 2.2m 5.5m 8.7m 14.5m 0.5m 
14.0m 22.8 kts 2.3m 5.9m 8.8m 14.9m -0.9m 

Table 7: Example calculations for Spruance-class destroyer (DD963V)  

  
 We see that large stern sinkages in the order of 3 – 6 metres are predicted for 
the frigate and destroyer while passing through the critical speed. The negative 
underkeel clearances for the frigate in 11m water depth, or the destroyer in 14m water 
depth, suggest that the ships will not be able to pass through the transcritical speed in 
these water depths without being at significant risk of grounding. 

Conclusions 

Simple expressions have been put forward for predicting the maximum 
midship sinkage and stern sinkage of a high-speed displacement ship in shallow open 



 

water. These expressions depend only on the displacement, waterline length and water 
depth, with coefficients that are weakly dependent on the shape of the ship 
(principally LCB and LCF). 

Verification is difficult at this stage, since full-scale data are not easily 
available, and model scale data are affected by the presence of sidewalls, even in wide 
tanks. These formulae should be used with caution until further verification is 
possible.  

Nevertheless, the formulae provide useful guidelines for estimating grounding 
risk at high speed in shallow water. They also highlight the drastic nature of flow 
around a ship at transcritical speeds, with large stern sinkage and significant 
grounding risk. 

Provided the general dimensional nature of the solution is correct, coefficients 
can be adjusted in future as more experimental data becomes available. 
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