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Abstract This article traces the contributions of Prof. E.O. Tuck to the field of 
mathematical ship squat prediction. The review expands on Tuck’s own review of his 
early work [1] and describes the use of his formulae in modern squat prediction 
methods. A method for calculating Tuck’s sinkage and trim coefficients using easily-
obtainable ship parameters is also described. 
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Nomenclature 

WPA  ship waterplane area 

aftfwd,A  waterplane area forward or aft of parallel midbody 
)(xB  ship waterline breadth at station x 

mB  ship maximum waterline breadth  

hF  depth-based Froude number ghU /  
g  acceleration due to gravity 
h  water depth 

LCFI  second moment of waterplane area ( )∫
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dxBx  

L  ship submerged length 
LCB Longitudinal Centre of Buoyancy 
LCF Longitudinal Centre of Floatation 
s  sinkage 

)(xS  ship submerged cross-sectional area at station x 
T  ship draught 
U  ship speed 
w  canal width 
x  longitudinal coordinate, centred at submerged midships, positive aft 

aftfwd,x  position of forward or aft extremity of parallel midbody 
y  transverse coordinate, centred on ship centreline, positive to starboard 
z  vertical coordinate, centred at undisturbed free surface, positive upwards 

aftfwd,α  longitudinal scaling factors forward or aft of parallel midbody 
φ   disturbance velocity potential 
θ  dynamic trim angle (radians), positive bow-down 

aftfwd,ξ  LCF of hull section forward or aft of parallel midbody 
∇  ship submerged volume 
 



 

1 Introduction: ship squat and under-keel clearance 
Ship squat is defined as the change in a ship’s vertical position when under way. It is 
normally characterized by a bodily sinkage and a dynamic change in trim. Therefore 
both the bow and stern normally sink further downwards as the speed increases, but 
by different amounts. For large modern bulk carriers or containerships, bow and stern 
sinkage can be in the order of 1 – 2 metres. This may cause the ship to run aground 
if it is moving too fast in shallow water. The effect is shown in Figure 1. 
 

sLCF 

 
Figure 1: Ship in static floating position (grey outline) and under way (black outline). Dashed 

line shows undisturbed water level. Sinkage at LCF is sLCF . Change in trim angle is θ  
(positive bow-down) 

 
In the 1930s, sinkage of model ships had been measured and scaled to full scale by 
Horn [2]. Around the same time, sinkage of an ellipsoid had been calculated by 
Havelock [3], assuming potential flow. They found that, for moderate speeds of 
moderate size ships, ship sinkage was in the order of a decimetre. Mariners however 
could not measure the bodily sinkage of a ship at sea, due to the lack of a defined 
vertical reference. Furthermore, what the mariners used as a visual reference, i.e. the 
sea level around the ship, was misleading them, since the free surface around a 
moving ship is also pulled bodily downwards. Apart from a few dedicated model 
tests, most early model tests focused on resistance and used a towed model; there 
seemed no need to set up a vertical reference to assess the bodily sinkage of the 
model. Therefore up until the early 1960s, the sinkage component of ship squat was 
mostly ignored in both model testing and theoretical investigations.  
 
It was known through seamen’s experience, as well as model tests [4] that trim could 
change significantly at certain speeds in shallow water. This effect could be 
measured by mariners with a pendulum on board the ship, and was seen to be 
important, as a large bow-up trim correlated with a large resistance and hence fuel 
usage. The effect of trim on squat must also have been recognized; for example, an 
observed trim change of 2ft between the bow and stern when underway could be 
used to conclude that the bow had sunk by 1ft and the stern had risen by 1ft. 
However in most cases, trim and its effect on squat were small, especially for the 
ships of the day which were mostly close to fore-aft symmetric. 
 
The 1960s saw unprecedented growth in the size of cargo ships being brought into 
service. Ports that had up until this time been considered deep water, were suddenly 
considered shallow water. Questions were inevitably asked about whether the 
vertical position of a ship, and hence the clearance between a ship’s keel and the 
seabed, was affected by the ship’s speed through the water. Due to the limited 
information available, rules of thumb were developed for under-keel clearance, such 



 

as “allow one foot of clearance for squat” or “allow one foot for every 5 knots of 
speed” [5]. 
 
Fortunately for the shipping world, both the model testing community and 
mathematical community came to the rescue before any of the new large ships 
suffered a serious grounding. Model testing tanks started measuring bow and stern 
sinkage [6], using a towing carriage as a vertical reference, and the results were 
scaled up to full scale. However, a physical theory of ship squat was urgently needed 
in order to make sense of the model test data and be able to predict the squat of 
general ships at general speeds. 
 
2 The foundations of ship squat theory 
As far as the need for a physical squat theory was concerned, Ernie Tuck was in the 
right place at the right time, with the right skills. Having completed his PhD thesis 
“The steady motion of a slender ship” [7] at Cambridge, he arrived at the David 
Taylor Model Basin in 1963. Here he was able to continue his theoretical treatment of 
slender ships, but all the while be surrounded by model ship testing and the 
practicalities of ship design. In 1964 he published an asymptotic expansion [8] for the 
flow around a slender ship in deep water, in which the technique of matched 
asymptotics was used to define the leading-order approximation to the kinematic hull 
boundary condition. 
 
1964 also saw the publication of a defining set of shallow-water model tests [6], 
which were instrumental in bringing the topic of ship squat to Ernie’s attention. In 
1966, he published his groundbreaking article “Shallow-water flows past slender 
bodies” [9]. For Ernie, this was a fairly straightforward extension of his earlier deep-
water work [8]. However, this new method produced a closed solution to the dynamic 
sinkage and trim of a ship in shallow water, which would form the basis of most such 
methods in use today. 
 
The first assumption of the method was that the flow is incompressible, a natural 
consequence of the very low Mach numbers at which ships operate. The next 
assumptions were that the flow is inviscid and irrotational. These assumptions were 
based on the fact that ships operate at extremely high Reynolds numbers (order 109) 
and are slender streamlined objects. Hence viscous effects are confined to a thin 
boundary layer near the ship’s hull, and do not significantly affect the pressure 
distribution around the hull, except possibly at the stern. Therefore pressure 
distributions calculated using such methods should be adequate for predicting overall 
quantities such as sinkage and trim. 
 
Based on these assumptions, a velocity potential would exist, and would satisfy 
Laplace’s equation throughout the fluid domain, subject to appropriate boundary 
conditions. The ship-fixed coordinate system we shall hereafter use to describe the 
flow around a ship is shown in Figure 2. The third dimension z is centred on the 
undisturbed free surface, positive upwards. 
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Figure 2: Plan view of ship-fixed coordinate system 

 
φ  is defined hereafter as the disturbance velocity potential, so that the total fluid 
velocities in the ship-fixed frame are given by (grad ( )φ+Ux ). 
 
For flow past a slender object, it was already well known [10] that the kinematic and 
dynamic boundary conditions on the free surface could be linearized and combined 
to give 
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This formed the boundary condition on the free surface. In open water of constant 
depth h, the boundary condition on the seabed was the kinematic condition 
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Tuck’s 1966 article combined the ideas of shallow-water flows and slender-body 
flows. He made the realistic assumption that, for a ship in sufficiently shallow water 
that it might be at risk of grounding, the ship beam, ship draught and water depth 
were all of similar order ε  and small compared to the ship length L. The first 
consequence of these assumptions, when applied to the governing Laplace equation 
and boundary conditions (1,2), was that the flow around the ship was nearly 
horizontal, with the velocity potential satisfying, to leading order, 
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This equation had been obtained by Michell [11] for a thin vertical strut extending 
from bottom to top of a shallow stream. For a ship hull, there remained the problem 
of defining the kinematic boundary condition on the hull, which Ernie solved using 
matched asymptotics, in a similar way to the deep-water problem [8]. An “outer 
region” was defined for )(LOy = , where the flow was governed by equation (3). An 
“inner region” was defined for )(εOy = , in which the leading-order velocity potential 
was a function of x  only, while the second-order flow was a function of ),( zy only. 
The second-order flow satisfied a rigid free surface boundary condition, and 
produced an outflow at the outer limit of the inner region, which was constant in the 
vertical. This transverse outflow was matched to the inner limit of the outer region, to 
yield a hull boundary condition which could be used for the outer flow, namely 
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As far as the outer flow is concerned, the ship behaves like a line of sources in the 
(x,y) plane, with source strength proportional to the rate of change of ship cross-
sectional area at each station x. The velocity potential for subcritical flow was 
therefore solved to be  
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Hydrodynamic pressure is found using Bernoulli’s equation, and the pressure 
beneath the hull found by taking the limit as 0→y  (the inner limit of the outer 
solution). Sinkage and trim then follow by hydrostatics. The symmetry of equation (5) 
means that for a fore-aft symmetric hull, sinkage is non-zero and trim is zero at 
subcritical speeds. A similar version of equation (5) exists for supercritical speeds [9], 
which predicts that trim is non-zero and sinkage is zero for fore-aft symmetric hulls. 
 
3 Simplifying the results 
Prof. Tuck recognized that his slender-body shallow-water results would be of little 
use to mariners in its current form. To quote from [12],  

“It must be confessed that all these results are of little direct benefit to the 
navigator, as complex mathematical computations are required in order to estimate 
the squat in any given situation. Such computations can be readily performed by 
suitably qualified persons with access to a computer, but hardly by an individual pilot 
in his line of duty!” 
In order that his results may be more readily accessible to mariners, Tuck performed 
a dimensional analysis of his sinkage expression, and found that it could be written in 
the following form [13]: 
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The sinkage coefficient sc  then satisfies 
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This was calculated for a range of example hulls, and found to be approximately 
constant (between 1.3 and 1.5) in all cases. A value of 1.5 was suggested as a 
conservative figure for general use. 
 
Tuck also recognized that in most practical cases, the depth Froude number is low 

and 21 hF− could be replaced by unity, yielding the simpler approximation [12,13] 
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The articles [12,13] do not mention dynamic trim, despite a valid theoretical formula 
for this having been developed in [9]. The present author believes that there are 
three reasons for this: 

1. Ships built up until the 1960s generally had their centre of buoyancy close to 
midships, in which case the dynamic trim is small. Prof. Tuck had most likely 
done calculations for example ships and found that midship sinkage, rather 
than dynamic trim, was the dominant effect. To quote from [1], “.. the term 
‘squat’ includes both sinkage… and trim… (for) subcritical speeds, sinkage is 
the more important phenomenon, because the increases in draft at bow and 
stern are large compared with the differences between them.” 



 

2. Dynamic trim is strongly affected by the shape of the hull, so the formula for 
dynamic trim cannot be simplified as much as that of sinkage. 

3. Flow near the stern of the ship is influenced by possible flow separation, as 
well as the ship’s propeller, neither of which are included in the theory [9]. 
These factors influence dynamic trim far more than midship sinkage. It is 
probable that Prof. Tuck understood these limitations of the dynamic trim 
theory from his time at the David Taylor Model Basin, and preferred to 
concentrate on the more accurate midship sinkage predictions. 

 
Despite Prof. Tuck not developing a dynamic trim formula for general use, other 
researchers [14,15] were able to analyze his 1966 trim formulae in a similar manner 
to that which was done for sinkage. This allowed the dynamic trim angle to be written 
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Unlike for sinkage, the coefficient θc  depends strongly on the hull shape, being zero 
for fore-aft symmetric hulls, positive for modern bulk carriers with centre of buoyancy 
well forward, and either positive or negative for containerships. Following [9], the trim 
coefficient can be calculated from  
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Therefore Prof. Tuck had laid the foundations for both a complicated and a simple 
method to predict ship squat in open water of constant depth. For mathematicians 
capable of evaluating singular double integrals, the sinkage and trim coefficients 
could be calculated for any given hull shape using equations (7,10). For model 
testing organizations, the coefficients could be calculated empirically for each hull 
using equations (6,9) and model test results. Once the coefficients had been 
calculated theoretically and checked empirically, they could be generalized for 
different hull types (e.g. bulk carriers, containerships) for use in equations (6,9) by 
mariners. 
 
4 Ships in canals and dredged channels 
The obvious extension of Tuck’s 1966 open water theory was to include laterally 
restricted water. Tuck analyzed the case of a ship travelling along the centreline of a 
canal [16], and found that the governing equation (3) was best solved by Fourier 
transform. The open water case also had a Fourier-transform type solution, though 
this is more computationally intensive than the original source-type solution put 
forward in [9]. Nevertheless, Tuck must have investigated the open water Fourier-
transform solution in stating that the canal solution and the open-water source 
solution agree in the wide channel limit [16]. 
 
A one-dimensional hydraulic theory for ships in very narrow canals, which involves 
solution of a cubic equation for the local flow velocity, was already well-known at this 
time [17,18]. Tuck included in his 1967 paper a simple linearized hydraulic theory for 
flow past a ship in a narrow canal. The general width solution was shown to agree 
with the hydraulic theory in the narrow-channel limit. 
 
An important result from the general-width theory [16] was that the influence of canal 
width depends primarily on (width / shiplength) ratio, rather than (width / beam) ratio. 
Canal walls first start to increase the squat when the width is around 3 times the 
shiplength. When the width is equal to the shiplength, the sinkage and dynamic trim 
at low speed are around 30% larger than in open water.  



 

 
The next result was that the effect of canal walls becomes increasingly important as 
the ship speed increases. In fact, Tuck found that the percentage increase of sinkage 
and trim in a canal over the open water values is almost a universal curve for all ship 
types, depending on the width parameter 
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As well as wall-sided canals of constant depth, Tuck also investigated dredged 
channels, involving a step depth change to shallower water on either side of the deep 
central channel [19]. The problem was solved by Fourier transform and sample 
numerical results given. An interesting case studied was when the flow in the deep 
channel is subcritical, but in the shallower water is critical, in which case there is zero 
flux from the deep to the shallow water, and the flow past the ship is the same as if it 
were in a wall-sided canal.  
 
5 Transcritical flow in open water 
Prof. Tuck recognized that his open water theory became singular at the “critical 
speed” 1=hF . For a ship travelling at the critical speed, i.e. the natural speed of long 
waves in shallow water, there is no restoring force on the free surface according to 
linear theory, as any wave shape can travel at the same speed as the ship. Therefore 
the free surface is undefined according to linear theory. From [9], 
“It is clear that good agreement cannot be expected near to the critical speed, where 
the first-order theory predicts infinite values for all forces. By analogy with the 
aerodynamics of transonic flow, we should expect that in order to predict correctly the 
finite values obtained in this region we should need to consider some special 
nonlinear effects, and this will not be done here.” 
 
Despite the problems at the critical speed, the behaviour of the open water theory at 
subcritical speeds was correct: a rapid increase in dynamic sinkage as the critical 
speed was approached. Tuck knew from the aerodynamic analogy that travel at the 
critical speed should be perfectly possible, and had studied closely the model test 
results of Graff, Kracht & Weinblum [6] showing the sudden changes in sinkage and 
trim that occur close to the critical speed. Early in this author’s PhD, Ernie brought 
out a carefully-guarded original large-scale set of the 1964 model test plots, clearly 
showing the large peaks in sinkage, trim and wave resistance, and said, “We need to 
work out what’s going on here”. We then set about including the leading-order effect 
of dispersion in the governing equation (3), and solving the resulting equation by 
Fourier transform. When unsure about the formulae for Filon quadrature coefficients 
given in a text book, Ernie declared, “We’ll have to work it out for ourselves. I’ll race 
you.” He won, and we went on to develop a computational method for predicting 
maximum sinkage and trim [20], following on from the finite-depth method [13] 
developed by Tuck & Taylor in 1970. 
 
Other recent research [21] includes nonlinear terms in the transcritical flow 
equations, and calculates the unsteady soliton production of a ship started 
impulsively from rest. This method shows promise for predicting the effects of 
nonlinearity on transcritical sinkage and trim in open water. 
 
6 Transcritical flow in a canal 
One of the results of nonlinear hydraulic theory [18] was that there existed a range of 
ship speeds in a canal for which no steady flow was possible. Tuck & Taylor [13] 
quantified this speed range in terms of the ship and canal cross-sectional areas, 
producing a diagram of the speed limits of steady subcritical and supercritical flow. 



 

 
By combining unsteadiness, nonlinearity and two-dimensionality for canal flows, 
modern researchers [22,23] have studied the interesting problem of unsteady soliton 
production in the transcritical speed range, as well as further refining the speed limits 
of steady subcritical and supercritical flow. 
 
7 Accuracy of Tuck’s squat formulae  
Model test results  
Tuck’s 1966 paper [9] included a comparison of his theoretical predictions with the 
measured sinkage and trim [6] of a Taylor A3 (frigate-type) hull. Perhaps 
unfortunately, the independent model test results had concentrated on the 
transcritical speed range, and did not include accurate results for low speeds, at 
which Tuck’s 1966 theory is most accurate and practically useful. Nevertheless, Tuck 
showed the comparison over the full experimental speed range 5.15.0 << hF , 
including the theory’s known singularity at 1=hF . It was shown that sinkage and trim 
were quite well predicted at the lower subcritical speeds as well as higher 
supercritical speeds.    
 
We shall now compare the predictions from Tuck’s theory with some recent model 
test results for a bulk carrier hull at realistic (low) speeds. Figure 3 shows a 
comparison between measured sinkage coefficients [24] for a MarAd L-Series bulk 
carrier model, and predictions from Tuck’s theory [16]. The canal theory has been 
used because of the finite width of the testing tank ( )1.2/ =Lw . In this case the trim 
coefficient is approximately the same as it would be in open water, but the sinkage 
coefficient is 9% higher. 
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Figure 3: Measured and predicted sinkage coefficient for a bulk carrier model 

 
The comparison shows us that: 



 

1. The general dimensional nature of the solution is accurate, with no clear 
influence of either speed or depth/draught ratio on the measured sinkage 
coefficient. 

2. The measured sinkage coefficient is very similar to that predicted by Tuck’s 
theory. 

 
There is a common misconception in the maritime community that squat is the result 
of water being accelerated as it passes underneath the ship, so that as the clearance 
becomes small, the squat becomes catastrophically large. The test results above 
show that there is no such effect at small h / T, other than the normal sinkage 
increase as the water depth decreases. In fact, as the clearance becomes small, 
more water is simply diverted around the sides of the ship. To quote from [9],  
“One might expect a very large velocity and hence abnormally low pressure at any 
point where a cross-section almost touches bottom, but the conclusion from the 
present analysis is that to first order the pressure at such a point is no lower than 
anywhere else on the same cross-section. Presumably this implies that the fluid 
passes to the side of any such close gap so as to keep the velocity there comparable 
with that elsewhere on the cross-section.” 
 
Figure 4 shows dynamic trim measurements and predictions for the same bulk carrier 
hull. 
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Figure 4: Measured and predicted trim coefficient for a bulk carrier model 

 
We see that the dimensional formula (9) accurately predicts the effect of depth-
draught ratio, with no clear influence on measured trim coefficients at constant 
speed. However, the effect of speed is not accounted for correctly, and the measured 
trim is always less bow-down than predicted. The model tests referred to used a 
towed rather than self-propelled model; this fact, as well as the low Reynolds number 
of the model scale flow, make it likely that flow separation was occurring at the stern, 



 

decreasing the bow-down trim in the model tests. This effect would be speed-
dependent. 
 
Full-scale results  
Since the advent of real-time kinematic GPS, ship squat can now be measured 
accurately at full scale. Squat measurements of containerships are described in [25], 
including comparison with Tuck’s open water theory. It was seen that LCF sinkage 
was well predicted by the theory, except in cases of rapid depth or speed changes, 
which violate the steady assumption. Dynamic trim was also well predicted by the 
theory along the straight sections of the route. The present author has also 
undertaken full-scale ship squat trials on bulk carriers in Torres Strait (not yet 
published), showing good agreement with Tuck’s open water theory. 
 
Another set of full-scale ship squat trials is described in [26], including comparison of 
bow sinkage with the ICORELS formula (see Section 7), which is based on Tuck’s 
dimensional formulae (6,9). This comparison showed very good agreement. 
 
8 Use of Tuck’s formulae in modern ship squat prediction 
The 1997 PIANC guidelines “Approach channels: a guide for design” [27] gives an 
overview of the eleven most accurate practical squat prediction methods in use at 
that time, for open water or moderate-width canals. The PIANC guidelines begin by 
saying that the fundamental theoretical study into squat was that of Tuck in 1966. 
Four of the eleven models [14,15,28,29] are directly based on Tuck’s dimensional 
equations (6,9), using empirically-determined coefficients. These include the 
ICORELS model [29] developed by PIANC as the most appropriate for general 
prediction of bulk carrier squat. 
 
As well as the squat models mentioned in [27], other authors [30,31,32] have also 
developed specialized squat models for open or confined water, based on Tuck’s 
method.  
 
9 Other modern ship squat prediction methods  
Apart from the Tuck-based methods, the other practical ship squat prediction 
methods recommended in the PIANC guidelines [27] are all regression formulae. 
These are best-fit equations to model testing data, using perceived input variables, 
but generally no physical basis. Such regression methods clearly work well for the 
types of ships used to develop the formulae, but may give erratic results for different 
ship types, especially those lying outside the range of parameters used for the model 
tests. 
 
An alternative theoretical approach to ship squat prediction in open water is the 
directed fluid sheet method [33]. Whereas Tuck’s method [9] models the flow as 
predominantly longitudinal and transverse ),( yx , the directed fluid sheet method 
models the flow beneath the ship as predominantly longitudinal and vertical ),( zx . 
This method assumes a large (beam/draught) ship and models the flow beneath the 
centreline of such a ship.  
 
The use of panel methods is becoming increasingly common for predicting ship squat 
in open or confined water. Example calculations using a Rankine-source panel 
method are described in [34].  
 
Note that all squat methods which use the full ship hull shape are subject to the same 
difficulties in routine practical application as Tuck’s original method; this will be 
discussed in the following section. 



 

 
10 Calculating Tuck’s sinkage and trim coefficients 
Model tests give a convenient way of determining the sinkage and trim coefficients 
for a given hull, which can then be assumed the same at full-scale, as done by the 
empirical methods described in Section 8. However, there remains the question of 
viscous scale effect with respect to dynamic trim, especially if a towed rather than 
self-propelled model is used. It is expected that the trim coefficient equation (10) will 
be more accurate at full scale than at model scale because of the much higher 
Reynolds number and therefore lesser effect of viscosity. Preliminary investigations 
by the author on containerships in Hong Kong [25] and bulk carriers in Torres Strait 
suggest that this is the case. Therefore it is still desirable to be able to calculate the 
sinkage and trim coefficients for a given hull theoretically. 
 
As Prof Tuck recognized, equations (7,10) for determining exact sinkage and trim 
coefficients are limited to practising mathematicians. Use of the formulae is also 
thwarted by the difficulty in obtaining the section area curve )(xS  and waterline 
breadth curve )(xB  for the ship in question. This information is normally obtained 
from the “body plan”, a design drawing showing transverse sections of the hull at 
different longitudinal spacings. Alternatively, the information can be obtained from a 
Table of Offsets, which gives (x,y,z) coordinates of the hull surface. 
 
An example body plan is shown in Figure 5, with the rear half of the hull on the left 
and forward half (including bulb) on the right.  

 
Figure 5: Example body plan for a bulk carrier hull 

 
Unfortunately, body plans and offset tables are confidential for newer ships, as they 
define the entire shape of the hull. For older ships where hull confidentiality is no 
longer an issue, such information is generally not carried onboard the ship; instead, it 
is kept in the original design office, which may no longer exist. Therefore it is not 
practical to routinely obtain full )(xS , )(xB  curves for normal commercial ships. 
 
A good source of readily-available hull data for commercial ships is the Trim and 
Stability Book, which is kept onboard all large vessels. This book lists many important 
waterplane and volume parameters, over a full range of midship draughts and static 
trim values. A method will now be described for approximating the )(xS , )(xB  curves 
for a bulk carrier hull, based on information found in its Trim and Stability Book. 
 
Firstly, a representative hull is chosen, with similar proportional bulb length to the 
bulk carrier being modelled. The hull should also be fairly similar in terms of the other 
dimensionless parameters, so that only minor modifications are required. A range of 
representative bulk carrier hulls is publicly available, including systematic series 
[35,36] and representative hulls found in naval architecture software such as 
MaxsurfTM and SeawayTM.  



 

 
The representative hull is modelled at the same draught (as a proportion of its full 
load draught) as the ship, and the same static trim. It is scaled to the same length, 
beam and draught as the ship we are modelling. The waterline breadth and section 
area curves are then found for the representative hull. These may be non-
dimensionalized, as the sinkage and trim coefficient equations (7,10) depend only on 
the shape of the ship and not the length, beam or draught. However, the author is 
reminded of Prof. Tuck’s plea [8] to avoid non-dimensional variables when 
developing equations, and we shall continue here in dimensional variables.   
 
Example )(xB  and )(xS  curves are shown in Figure 6 for a Japan standard series 
1704B hull with bulbous bow [36]. 
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Figure 6: B(x) and S(x) curves of standard series bulk carrier hull [36], showing limits of 

parallel midbody. Front of bulb at 2/Lx −= , stern at 2/Lx = . 
 
We can see that a bulk carrier hull is very block-like, with both the waterplane and the 
section area distribution being characterized by a long parallel midbody. By adjusting 
the limits of this parallel midbody, while keeping the bow and stern curve shape the 
same, we can adjust the )(xB , )(xS  curves so that they better represent the ship we 
are modelling. 
 
The sinkage and trim coefficient equations (7,10) depend on the shape of the ship 
rather than the length, beam or draught. For a given length, beam and draught, this 
shape can be characterized principally by the ship’s displaced volume ∇ , 
longitudinal centre of buoyancy (LCB), waterplane area WPA  and longitudinal centre 
of floatation (LCF). All of these quantities can be found from the Trim and Stability 
Book at the appropriate draught and static trim. 
 



 

In order to model the correct waterplane area and LCF, we can adjust the forward 
and aft limits of the waterplane’s parallel midbody shown in Figure 6. The method is 
identical for the displaced volume and LCB, by adjusting the forward and aft limits of 
the section area parallel midbody.  
 
Here we shall describe the method for the waterplane, based on simple geometrical 
considerations. The forward and aft limits of the representative hull’s parallel midbody 
lie at fwdx and aftx , and the forward and aft waterplane areas (up to the parallel 
midbody) are fwdA and aftA . In order to get the waterplane area and LCF correct, we 
stretch the forward and aft curved portions longitudinally by factors fwdα and aftα , 
keeping the bow and stern in the same position. The forward end of the parallel 
midbody is therefore moved to ( )2/2/ fwdfwd LxL ++− α  and the aft end to 

( )aftaft 2/2/ xLL −−α . The new waterplane area is therefore 
( ) ( )[ ] mfwdfwdaftaftaftaftfwdfwdWP 2/2/ BLxxLLAAA +−−−++= αααα   ( 12 ) 

 
If the longitudinal centres of floatation of the forward and aft curved sections are at 

fwdξ and aftξ  for the representative hull, the new longitudinal centre of floatation (LCF) 
satisfies 

( )[ ] ( )[ ]
( ) ( )[ ] ( ) ( )[ ] 2/2/2/2/2/

2/2/2/2/LCF

maftaftfwdfwdfwdfwdaftaft

aftaftaftaftfwdfwdfwdfwdWP

BxLLxLxxLL
LLALLAA

−−++−−−+
−−+++−=

αααα
ξααξαα

 

          ( 13 ) 
 
Equations (12,13) can now be solved to determine the required scaling factors 

fwdα and aftα  , so that the correct waterplane area WPA  and longitudinal centre of 
floatation LCF are achieved. Once this is done, the representative hull’s )(xB  curve 
shown in Figure 6 is modified by longitudinally stretching the forward section by fwdα  
and aft section by aftα . 
 
A similar process is followed with the section area curve as described above. 
The )(xB , )(xS curves thus obtained can then be input into equations (7,10) to 
determine the sinkage and trim coefficients for that particular bulk carrier hull. 
 
For a containership, a similar method can be employed to obtain the correct 
displaced volume, LCB, waterplane area and LCF, based on a chosen representative 
hull. The difference is that containerships do not have a long parallel midbody, so the 
required changes must be achieved by smoothly filling out and longitudinally shifting 
the waterplane to achieve the correct waterplane area and LCF, for example. 
Parametric transformations are available in naval architecture software (e.g. 
MaxsurfTM) to achieve this.  
 
11 Conclusions 
The contributions of Prof. E.O. Tuck to the field of ship squat prediction have been 
highlighted. His important research in this field included the development of: 
• matched asymptotic expansions for ship hulls [8] in 1964 
• a slender-body shallow-water method for ships [9] in 1966 
• extension of the theory to canals [16] in 1967 and dredged channels [19] in 1975 
• making the formulae accessible to mariners and model testing organizations 

through an accurate dimensional representation with approximate coefficients 
[12] in 1970 



 

• a computational method to accurately predict maximum sinkage through the 
critical speed [20] in 2001 

 
The widespread use of Tuck’s formulae in modern ship squat prediction has been 
described, including its adoption by PIANC [27] as the method of choice for bulk 
carrier hulls. Tuck’s formulae and its derivatives have been shown to be in good 
agreement with model tests and full-scale tests for bulk carriers and containerships. 
 
A practical problem with the application of Tuck’s original formulae (6,7,9,10) to 
commercial ships is that it is normally not feasible to obtain their exact )(xB , )(xS  
curves. For this reason, a method has been described for approximating the 

)(xB , )(xS  curves of a general bulk carrier or containership hull, based on 
information found in its Trim and Stability Book and a modified representative hull.  
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