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Abstract - Unmanned underwater vehicles (UUV’s) are
used in a number of applications such as pipeline and
offshore structure maintenance by the offshore oil industry,
and for mine clearance by the navy. They typically operate
in a large range of flow conditions making it difficult to
predict the hydrodynamic forces acting on them, and
consequently making vehicle control difficult.

The aim of this project was to obtain hydrodynamic
derivative measurements from sea trials using an
underwater vehicle which is a half-scale model of the PAP-
104 mine countermeasures UUV. Trials data were collected
for a series of manoeuvres which were then reconstructed
to give the required vehicle state estimates. This
reconstruction was carried out using an extended Kalman
filter. Hydrodynamic derivative estimates were then
generated by a stepwise regression algorithm, which took
the reconstructed vehicle state and measured vehicle forces
as input.

Traditionally these types of hydrodynamic measurements
are made using a Planar Motion Mechanism (PMM). Any
later changes to the vehicle configuration may reduce the
usefulness of these measurements. Ideally system
identification (SI) techniques would provide a more
practical alternative, as the UUV need only be driven in a
predefined way and the SI techniques applied in order to
obtain current hydrodynamic measurements. SI techniques
also give measurements based on the overall response of
the vehicle and umbilical, which is not the case with PMM
measurements.

Index terms - underwater vehicle, ROV, Kalman filter,
system identification

I. INTRODUCTION

The half scale PAP-104 remotely operated underwater
vehicle is essentially a rigid body with two fixed thrusters,
one on either side. When in operation the ROV is
connected to an umbilical (tether) as well as a chain. The
umbilical serves as a communications link to the surface,
while the chain is dragged along the seabed keeping the
craft at an approximately constant depth.

This paper firstly outlines the hydrodynamic derivatives
that were identified for the PAP 104, and the measurements
taken during the sea trials. This is followed by a description

of the extended Kalman filter used to estimate the vehicle
state and some state estimation results from the trials. The
paper finishes with the parameter estimation and some
planar motion mechanism results for comparison.

II. HYDRODYNAMIC COEFFICIENTS

The coordinate system used to describe the vehicle motions
is fixed to the vehicle with the positive X axis forwards, the
positive Y axis to starboard and the positive Z axis
downwards.

The forces acting on the underwater vehicle are described
by Equation 1 [1]:

( )
( )
( )
( )

T

U

G

ssssssK

rrrH

d

F

F

F

rqpwvuwvuF

rqpwvuF

rqpwvuF

r

q

p

w

v

u

M

+
+

+
+

+

=



























ψθφ ,,

,,,,,,,,

,,,,,

,,,,,

&&&

&

&

&

&

&

&

(1)
where:

M : Mass inertia matrix.

rqpwvu &&&&&& and ,,,,, : Vehicle accelerations in X, Y, Z,
roll, pitch and yaw respectively.

dF : Vector of  rigid body kinematic forces.
, q,ru, v, w, p : Vehicle velocities in X, Y, Z, roll, pitch and

yaw respectively.

HF : Hydrodynamic force vector.

rrr wvu ,, : Relative velocities of the vehicle to the flow.

KF : Vector of inertial forces due to unsteady fluid motion.

ssss  w, v,u ,w ,v , ssu &&& : Flow accelerations and velocities.

GF : Force vector due to weight and buoyancy.

ψθφ  and , , : Orientation angles (roll, pitch and yaw).

UF : Force on the body due to the umbilical cable and
chain,

TF : Vector of thruster forces.

The Hydrodynamic force vector HF  contains the
hydrodynamic derivatives which need to be estimated. This
paper assumes that the added mass and moments of inertia
for the vehicle have already been measured or calculated.
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Equation 2 gives the hydrodynamic force acting on the
vehicle in the X  (forwards) direction and is the first
component of HF :
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Here the relative Velocity vector is given by:

( ) ( )sssrrr wwvvuuwvu −−−= (3)

222
rrr wvuU ++= (4)

Similarly in the Y (Sway) direction the hydrodynamic force
is given by:
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The coefficients in front of the velocity products are the
hydrodynamic derivatives or manoeuvring coefficients.
For example Xqq describes the force in the X direction due
to the square of the vehicle’s pitch rate.  There are similar
equations and coefficients in the four remaining degrees of
freedom.

III. MEASUREMENTS

Measurements taken during the ROV trial included
accelerations, angular rates, loads, position and heading.

Vehicle depth, accelerations and angular rates were
measured by an inertial measurement package, TOWDAS,
provided by the Australian Defence Science and
Technology Organisation (DSTO). TOWDAS also had a
flux-gate compass for heading measurement, and a pressure
sensor for depth measurement. The vehicle umbilical,
thrusters, and depth control chain were strain-gauged and
the position of the vehicle was measured by the High
Precision Acoustic Surveying System (HPASS) developed
by Curtin University’s Centre for Marine Science and
Technology.  In this experiment HPASS was configured to
use 5 acoustic transponders to provide a high level of
redundancy.

All these measurements had different sampling rates and
accuracies. Position fixes also experienced some drop-outs,
most likely caused by parts of the vehicle obscuring the
acoustic line of site between the acoustic transducer on the
vehicle and one or more transponders. The frequency of
drop-outs was a function of the position and orientation of
the vehicle relative to the transponder web.

These measurements do not correspond directly to the
vehicle state required to perform the parameter estimation.
Corrections must be made for gravity effects,
accelerometer alignment and bias, position fix dropouts and
sampling rate differences. A Kalman filter (KF) was used

to combine the measurements from the different sensors
and perform the required corrections.

IV. KALMAN FILTER

A. Background
Kalman filtering is used wherever there is a need to
optimally estimate the state of a system using models and
observations of the system [3]. The Kalman filter takes all
the available information about the current state of the
system and, using the previous best state estimate,
calculates the most likely current state.

The Kalman filter also has the advantage of being able to
combine information from a variety of different sources,
and is easily modified. It also offers the ability to deal
easily (through variance assignment) with acoustic range
dropouts.

Kalman filters can diverge under certain conditions. The
most common explanation for this is that too much weight
is placed on the dynamic model relative to the measured
observations. In other words the covariance matrix
becomes unrealistically small. As a result observations are
ignored and inaccuracies in the model bring about
divergence. Other error sources might include biases which
are not compensated for, as well as roundoff and truncation
errors in the calculations. [4]

Since the vehicle model and observations are non-linear, an
Extended Kalman filter (EKF) was used. This filter uses a
Taylor series expansion of the model and observation
equations.

B. Setting Up the Filter
Three things are required in order to construct an extended
Kalman filter. Firstly, the dynamic model equations are
required. These equations give the vehicle state at the next
time step (t=tk+1) given the state at the previous time step
(t=tk). The dynamic model equations for the state estimator
are:
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where:
The subscripts k and 1+k denote the appropriate time, ie

1+kR is R at time 1+kt .

R : Vehicle position vector [X Y Z].
O : Orientation vector [φ θ ψ].
U : Vehicle global velocity [U V W].
ω : Angular velocity vector [p q r].
&ω  : Angular acceleration vector [p q r].

a o  : Local vehicle acceleration vector [ ]& & &u v w

ξ  : Noise vector.
dt : Amount of time between t=k+1 and t=k.
C : Transform from angular velocity/acceleration to
orientation angle velocity/acceleration.

Note that these equations are relatively straight forward,
and although it would be possible to use more accurate
model equations this would complicate the calculation of
derivatives required by the filter. The dynamic model
equations given here proved to be adequate given the
generally high quality of the observations.

Secondly, the observation equations need to be established.
These equations give the sensor outputs that should be
observed given the current state of the vehicle. The
acceleration at a point r within the vehicle is given by the
following:

( ) grraa o −×+××+= ωωω & (12)

where:
r : Position vector in the body-fixed axis [x y z].
a : Acceleration at the position r within a rigid body.

0a : Acceleration of the origin of the coordinate system.
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g : Acceleration due to gravity.

Equation 12 is essentially the observation equation for the
accelerometers. Each accelerometer would have a different
position vector, r, and would be multiplied by a direction
cosine to correct for the accelerometer alignment; a bias
term is also added. For example the observation equation
for one accelerometer would look like this:
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where:
l,m,n : Accelerometer direction cosines.
bias : Accelerometer bias.

Angular rate observation equations are of the following
form:
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The observation equation for an acoustic range is as
follows:

( ) ( ) ( ) noiseZZYYXXrange TTT +−+−+−= 222 (15)

where:

[X Y Z] : Vehicle position.
[XT YT ZT] : Transponder position.
range : Range measurement that is expected from the
transponder

Thirdly, the covariance matrices of the dynamic model
errors and measurement noise need to be defined.
Measurement noise was characterised using stationary
trials data, whereas the dynamic model covariances were
estimated by simulation.

When real-time state estimates are required a forward
Kalman filter must be used, but when post processing data
improved results can be obtained by using a Kalman
smoother (KS) which uses both past and future
observations to estimate the current state.  Equations for
both of these cases are given in [3].  Both the KF and KS
were implemented but only the KS outputs were used for
parameter estimation.

Verification of the KF and KS was carried out by using a
combination of simulations with and without noise, and
also by comparing actual trials results with inclinometer
data and other known manoeuvre details eg, manoeuvre
time, circle radius.

0 2 4 6 8 10 12 14

2

4

6

8

10

12

14

16

18

Global X Coordinate (m)

G
lo

ba
l Y

 C
oo

rd
in

at
e 

(m
)

Figure 1 Plan view of position estimates for a circle
manoeuvre.  The vehicle started from rest at (3, 10),
went straight ahead for a few seconds and then turned.
Crosses are the forward Kalman filter estimates and the
line is the Kalman smoother output.



V. KALMAN FILTER RESULTS

The following are some results after processing trials data
with the position estimator described previously.

Figure 1 shows the filter and smoother position estimates
and heading estimates for a circle manoeuvre. The initial
period of acceleration can be seen on the left side of Figure
1, while the rest of the manoeuvre is also the expected
circle to port. The Kalman smoother is seen to improve on
the original forward filter position estimates.

At the beginning of the manoeuvre the filter has not
converged and so its estimates are as much as 2 metres
from the vehicle’s actual position. The Kalman smoother
makes a much better estimate of the initial vehicle position.
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Figure 2 Global Y coordinate for circle manoeuvre to
port. Forward filter and Kalman smoother estimate are
shown.

Figure 2 shows that the forward filter estimates are still
converging up to the 30 second mark. The mean of the
differences between the smoothed and forward filter
coordinate estimates for the X, Y, and Z axis, after the 30
second mark, are 5.2cm, 10.1cm and 5.5cm respectively.
This shows that the Kalman smoother is making a
significant correction to the forward filter estimate.
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Figure 3 Vehicle pitch θθ for circle to port manoeuvre.
Forward filter and Kalman smoother estimates are
shown.

Figure 3 shows the filter and smoother estimates for the
vehicle pitch during the circle manoeuvre. The initial pitch
estimate of about -0.2 radians (11 degrees nose down) is in
agreement with pitch inclinometer data Figure 4. Note that
the vehicle state estimator does not use the pitch or roll
inclinometers in its calculations and the inclinometer data
is used only for validation purposes.

If the circle to port in Figure 1 was executed perfectly, the
expected phase difference between global X and Y axis
velocities, U and V respectively, would be 90 degrees. The
first maximum positive velocity V would also be expected
to occur 90 degrees before the first maximum positive U
velocity. Figure 5 shows that the filter velocity estimates
for U and V are approximately 90 degrees out of phase,
with the peak in the Y axis velocity occurring before the X
axis velocity peak as expected. The circle to port was not a
perfect circle so that U and V are not perfect sine waves.
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Figure 4 Data from pitch inclinometer during circle to
port manoeuvre.
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Figure 5 Global X and Y axis Velocities U and V
respectively for circle to port manoeuvre. Kalman
smoother estimates are shown. Solid line is the velocity
U and the Dashed line is the velocity V.

The Kalman smoother estimate for v&  (Figure 6) has a
maximum value of about 0.05ms-2 and a mean value of -
0.002ms-2 between the 36 and 90 second marks (steady
state circling part of circle manoeuvre). This compares well
with the estimated centripetal acceleration for this
manoeuvre -0.05ms-2 based on a vehicle velocity of 0.5ms-1

and a circle radius of 5m.
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Figure 6 Acceleration along vehicle local y axis v& . Solid
line is the Kalman smoother estimate. Dashed line is the
forward filter estimate.

All vehicle state variables were estimated well enough for
system identification purposes. However, the local
acceleration estimates were not expected to be accurate
because the accelerometer noise levels were usually greater
than the accelerations being measured. Verification of the
filter using simulated data showed that the filter does
converge to a correct solution. Numerical calculations of
the local accelerations using the estimated global velocities
and vehicle orientations were also consistent with the
filter’s acceleration estimates.

VI. PARAMETER ESTIMATION

By rearranging Equation 1 an equation of the form Ax=b
can be constructed. Here x contains the hydrodynamic
derivatives for one of the six degrees of freedom. b is a
vector of the estimated hydrodynamic force acting on the
vehicle throughout the manoeuvre, and A is a matrix
containing velocity products with each row corresponding
to one time step.

When least squares was applied to this model it was
evident that the residuals were correlated and hence either
the disturbances were not independent or there was a
deficiency in the hydrodynamic model. Investigation of this
correlation showed that the correlation was due primarily to
the umbilical and chain forces.

In order to correctly apply least squares it was necessary to
model the correlation with a first order autoregressive
process zn=εn+φzn-1. Here zn is the residual at time n and εn

is white noise. This produces the non linear least squares
problem given by Equation 16.

xAxAbb nnnn 11 −− −+= φφ (16)

A Gauss-Newton algorithm was used to solve for the
model parameters, and a stepwise regression algorithm was
used to select the hydrodynamic derivatives that were
included in the final model for each manoeuvre.

The following set of six tables (tables 1 to 6) show the
estimated hydrodynamic coefficients for three of the trials
manoeuvres, along with the coefficients as measured on a
1/3 scale model of the PAP-104 by a planar motion

mechanism (PMM). PMM coefficients not shown were not
measured.

Trials results with an asterix have the higher significance
(f-test value) in describing the hydrodynamic force for the
relevant degree of freedom during the specified manoeuvre.
Blank spaces are coefficients not chosen to describe the
manoeuvre on the basis of significance tests. The
percentage figures are the approximate standard errors of
the estimated coefficients as a percentage of the
corresponding coefficient.

Yv|v|
' is within experimental error of the PMM

measurement, and Xuu
' has the same order of magnitude as

the PMM measurement. Of the six coefficients that are
identified in more than one manoeuvre Ypq, Zuq, and

5.022 )( wvv
K +

′ are not within error of one another. Two of the

three Zuq measurements are within error of each other.

Considering the number of error sources in the trials data
and the conditions the UUV was operating under the results
are reasonable.

Circle Zigzag Line PMM
Xuu

' -
0.076
*

40% -
0.012

4.2%

Xuw
' 0.61

*
19%

Xvv
' 0.57

*
21% 0.043 3.9%

Xvr
' 3.79 64%

Xww
' -1.5 35%

Xwq
' -4.75 33% -2.5 29%

Xrr
' -0.82

*
27%

Table 1 PAP-104 non-dimensional x-axis surge
coefficients

Circle Zigzag Line PMM
Yuu

' 0.061 44%

Yup
' -0.39 26%

Yur
' 0.89

*
9% 0.04 93%

Yv|v|
' -0.90 50% -0.30 4.3%

Ywp
' 3.7 39%

Yp|p|
' -1.8

*
29%

Ypq
' -5.4 41% -1.9 37%

Table 2 PAP-104 non-dimensional y-axis sway
coefficients



Circle Zigzag Line

Zuq
' -0.77 22% 0.26 45% -0.38 68%

Zuw
' -0.18 41%

Table 3 PAP-104 non-dimensional z-axis heave
coefficients

Circle Zigzag Line

Kup
' 0.09 33%

5.022 )( wvv
K +

′ 0.42
*

27% 0.09 15%

Kvq
' 0.39 17%

Kwr
' 0.33 31%

Kpq
' 0.86

*
32%

Table 4 PAP-104 non-dimensional roll coefficients

Circle Zigzag Line PMM
Muu

' -0.10 19% -0.002 12
%

Muq
' -0.86

*
19% -0.72

*
14%

Muw
' -0.25 28%

Mvv
' 0.94 47% -0.013 18%

Mvp
' -2.5 27%

Mvr
' 2.1

*
23% 3.4 33%

'
/3 Uw

M 2.2 27%

Mrr
' -0.48 35%

Table 5 PAP-104 non-dimensional pitch coefficients

Circle Zigzag Line PMM
Nuu

' -0.04 42%

Nup
' 0.32 22%

Nur
' -0.54

*
8% -0.02 28

%
Nvw

' -0.07 26%

Nqr
' 0.69

*
29%

Table 6 PAP-104 non-dimensional yaw coefficients

VII. CONCLUSIONS

An extended Kalman smoother was used to reconstruct
system identification trials manoeuvres. The vehicle state
estimator was validated using a 6DOF UUV model and
reconstructed trials manoeuvre data were self consistent.

Identification of the hydrodynamic coefficients was carried
out using a stepwise regression algorithm. It was necessary
to remove correlation in the data using a first order
autoregressive model in order to apply least squares
correctly, and thus obtain better hydrodynamic coefficient
estimates.

There were significant differences between some of the
hydrodynamic coefficients obtained using system
identification and those measured using the planar motion
mechanism. The coefficients obtained using SI also had
larger standard errors associated with them than the PMM
measurements.

Possible reasons for the discrepancies between the two sets
of coefficients include measurement errors in the thruster,
umbilical and chain force measurements, the difficulty of
performing manoeuvres that would adequately excite the
coefficients with a two-thruster vehicle, and the fact that
the SI trials gave effective hydrodynamic coefficients for a
complete, operational vehicle whereas the PMM
measurements were made on a model of the shell of the
vehicle without thrusters.

A direct comparison between PMM and SI trials
coefficients does not reveal much about the effect of these
different values on vehicle performance. A better
comparison would be to compare the performance of
vehicles simulated with the two sets of coefficients in a
series of simulated trials manoeuvres. This work is
ongoing.
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