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Periodic structure waves (PSW) for an infinite 1D periodic structure of equally spaced point 
structure wave (SW) scatterers were previously derived from considering continuity and energy 
flux equations at any two adjacent cells where PSW were defined to be identical in all cells. 
This paper uses a 2x2-scattering matrix method where previous results for periodic structures 
are reproduced but also allows boundaries for finite structures to be included. The matrix meth-
od shows there are more possible PSW than the cell independent PSW assumed for infinite pe-
riodic structures. Indeed cell independent PSW are just the eigenvectors of the scattering matrix. 
The smallest possible finite periodic structure with just two scatterers is analysed in some detail 
and shows more simply than for an infinite periodic structure the physical constraints on scatter-
ing models imposed by conservation of energy (CoE). This confirms the previous conclusion 
from infinite 1D periodic structures that the only continuous wideband coherent PSW is the 
Bloch-Floquet wave (BFW) for symmetric scatterers. Asymmetric scatterers, including those 
that exhibit nonreciprocal wave propagation, allow coherent PSW at certain discrete wave-
numbers but more generally, consistency with CoE requires PSW to be incoherent over contin-
uous bandwidths. 
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1. Introduction 
Wave propagation in periodic structures has a long history starting the nineteenth century with 

the development of simple models and wave equations for media with spatially sinusoidal phase 
speeds [1]. Later developments of x-ray scattering and solid-state electronics exposed the practical 
need to understand wave phenomena for periodic structures. A key concept for electron waves in 
solids is the Bloch theorem for the wavefunction and shows that electrons can exist at certain ener-
gy bands but not other “forbidden” bands (also called band-gaps) [2,3]. Similar concepts apply to 
the macroscopic periodic systems of structural engineering but with freedom to design structures 
with desirable properties such as to strongly attenuate wave propagation over certain frequency 
bands [4]. 

For macroscopic systems, it is feasible to design components of a periodic structure that may not 
satisfy the assumptions for linear wave theory, particularly nonreciprocal wave propagation [5]. 
Nonreciprocal propagation by a periodic structure of asymmetric scatterers was found to enhance 
the wave diode effect and achieves greater attenuation than symmetric scatterers [6]. The use of 
scattering theory has had the advantage of analytic results for 1D periodic structures [7-10]. To de-
rive wave phenomena for asymmetric periodic structures, the Bloch theorem often used as a starting 
point was not assumed. Scattering theory applied to periodic structures, and crucially coupled with 
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the explicit constraint of CoE, recovers known coherent BFW for symmetric scatterers but also 
showed that coherent PSW over continuous bandwidths are inconsistent with asymmetric scatterers 
[7, 8, 10].  

For clarity, this paper defines this distinction between coherent and incoherent wave effects. The 
coherence that BFW exhibit is the well-known wavenumber dependent passing bands and stopping 
bands of wavenumber widths proportional to 1/d where d is the spacing between scatterers. The 
absence of band structures proportional to 1/d is considered to be incoherence which in this paper 
are an infinite bandwidth (i.e. inversely proportional to the width of the point scatterers). 

This paper extends previous work to better demonstrate the division between coherent and inco-
herent wave phenomena, and include finite periodic structures where boundaries are considered. 
Section 2 summarises the 2x2-matrix method for waves in a finite periodic structure. Section 3 con-
siders reflection and transmission by a finite periodic structure, including an analysis in some detail 
of the smallest possible periodic structure of just two scatterers. This shows that whereas a single 
scatterer conforms to CoE, two such scatterers any distance d apart only conform to CoE for a co-
herent wave over continuous wave bands when scatterers are symmetric (i.e. same conditions as for 
BFW). Two scatterers reaffirm that energy propagation by asymmetric periodic structures over con-
tinuous bandwidths does not depend on the spacing d, effectively requiring incoherent wave propa-
gation. Possible physical concepts for this incoherence are discussed. Section 4 summarises the 
2x2-matrix method for energy propagation in finite 1D periodic structures, which applies equally to 
coherent and incoherent waves. 

2. PSW in a finite asymmetric periodic structure 

An increasing cell index n is used to indicate cells at increasing position x. Superscripts ( )±  are 
used to distinguish the two possible directions of SW propagation incident onto and within a gener-
ally asymmetric finite periodic structure. Denote the amplitude of the sk+ wavenumber SW in any 
nth cell as ( )+

nA  at the position xn-1 of the (n-1)th scatterer. Then in the (n+1)th cell the amplitude 

is ( )
1nA +

+  at the position xn of the nth scatterer. For the sk− wavenumber SW the amplitudes 

are ( )−
nB and ( )

1nB −
+ in the nth and (n+1)th cells at scatterer positions position xn and xn+1 respectively. An 

advantage of defining ( )
nA + and ( )

nB − at scatterers separated a spacing d apart is that phase factors 
sik de can be grouped with the forward transmission coefficients ( )T ± and backward reflection coeffi-

cients ( )R ± as in ( ) ( ) ( ) ( )±±±± == ReRTeT dikdik ss ˆ ,ˆ . This is valid even if there is only one scatterer where 
d is arbitrary and the phase factor cancels out of scattering results.  

A single scatterer is defined by a 2x2 scattering matrix M that transitions a vector ( ) ( )( )- T

n nA B+ by 

 
( )

( )

( )

( )
1

1

n n

n n

A A

B B

+ +
+

− −
+

   
=      

   
M  (1) 

The elements of M are denoted , , ,AA AB BA BBM M M M . Previous papers for infinite periodic struc-
tures make the simplifying assumption that these vectors are cell independent as defined by  

 
( )

( )

( )

( )
1

1

n n

n n

A A

B B

γ

γ

+ +
+

− −
+

   
=      

   
 (2) 

Combining Eqs.(1) and (2) gives 
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( )

( )

0
0

nAA AB

BA BB n

AM M
M M B

γ
γ

+

−

 − −   
=     − −     

 (3a) 

 det 0AA AB

BA BB

M M
M M

γ
γ

− − 
= − − 

 (3b) 

Equation (3b) is the characteristic equation (CE) for M  

 
( )

( )

2 2 det 0
1
2 AA BBM M

γ γΓ

Γ

− + =

= +

M
 (4a) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21 1 det ,   det
2 4AA BB AA BBM M M Mγ γ γ± + −= + − ± + − =M M  (4b) 

 ( )
( )

( )
( ) ( )

1
A

A AA
B

AB

U
U M

U M
γ

±
± ± ±

±

    = =  −       

U  (4c) 

where the two solutions to Eq. (4a) forγ are the eigenvalues ( )γ ±  of M , corresponding to eigenvec-
tors ( )±U  where ( )

AU ±  are determined by the sources but otherwise are arbitrary. The signs in 

Eq. (4b) give ( ) ( )γ γ+ −< so that for a single source at x → −∞ the backward SW components ( )
nB −  

decrease with increasing n whereas for a single source at x →∞ the forward SW components ( )
nA +  

increase with increasing n. 
Scatterer asymmetry is embodied by ( )det 1≠M for which the two directions are not equivalent. 

Equations (4a, b, c) are symmetrized by defining 

 
( )

( )

( )
( )

( )
1 1 1,   ,   

det det det
γ γ γ γ Γ Γ± ±= = =

M M M


   (5) 

Since the output vector ( ) ( )( )1 1

T

n nA B+ −
+ + of the nth scatterer is the input vector for the n+1th scatter-

er, Eq. (1) is generalised to m equally spaced and identical scatterers by 

 
( )

( )

( )

( )
n m nm

n m n

A A

B B

+ +
+

− −
+

   
=      

   
M  (6) 

When m is large, rather than multiply m times the elements of M , it is more efficient to de-
rive mM from the two eigenvalues ( )γ ± noting the eigenvectors ( )±U of M  are also eigenvectors of 

mM . This leads to  

 
( ) ( )( )
( ) ( )( )

( ) ( )
( ) ( )( )

( ) ( )( )
1 1m m m m

m
γ γ γ γ

γ γ
γ γ γ γ

− + − +− −

− +

− + − +

− −
= −

− −
M M I  (7) 

where I is the unit matrix. The determinant of the product of two matrices is the product of their 
determinants so ( ) ( )det det mm =M M which is satisfied by Eq. (7).  

 
ICSV25, Hiroshima, 8-12 July 2018  3 



ICSV25, Hiroshima, 8-12 July 2018 
 

It is possible for the vectors ( ) ( )( ) , 1,..
T

n nA B n m+ − = are eigenvectors for a finite periodic structure of 

m scatterers but because Eq. (4c) shows both ( )
nA + and ( )

nB − , n=1,.m are nonzero either an energy 
source is needed at both ends or a reflector at one end in the case of one source. A single source can 
produce cell independent eigenvector solutions for an infinite or semi-infinite periodic structure. 
More generally a single SW source creates the initial vector ( ) ( )( )1 1

T
A B+ − that is a superposition of 

the eigenvectors but the relative coefficients of the superposition varies with n i.e. such vectors are 
not cell independent. 

3. CoE constraints on multiple asymmetric scatterers 

Suppose n=1 is the first scatterer of a finite periodic structure of m scatterers, and ( )
1A + is the SW 

amplitude from a source at 1x x< but there is no source at mx x>  (i.e. ( )
1 0mB −
+ = ). Then the forward 

transmitted ( )
1 mA +
+ and backward reflected ( )

1B − are uniquely determined by ( )
1A + . From Eq. (6) 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 1 1

1 1 1 0

m m
m AA AB

m m
m BA BB

A M A M B

B M A M B

+ + −
+

− + −
+

= +

= + =
 (8a) 

 

( )
( )( )

( )
( )

( )
( )

( )
( )

1 1

1 1

det m

m m
BB

m
BA

m
BB

A A
M

MB A
M

+ +
+

− +

=

= −

M

 (8b) 

The superscript for ( )m m≡M M is used to indicate that its elements are not the mth powers 
of , ,  & AA AB BA BBM M M M .  

Consider elastic scattering for which CoE is easiest tested. CoE is then 
( ) ( ) ( )2 2 2

1 1 1mA B A+ − +
+ + = which is satisfied if the elements of ( )mM have the property 

 ( ) ( )( ) ( )
22 2

detm m m
BB BAM M M= +  (9) 

3.1 Elastic scattering by two identical asymmetric scatterers 
For two identical scatterers  

 ( ) ( )
( )

2
2 2

2
AA AB BA AB AA BB

BA AA BB BB AB BA

M M M M M M
M M M M M M

 + +
= =   + + 

M M  (10) 

CoE for elastic scattering from Eq. (9) for m=2 is 

 ( ) ( )2 242 detBB AB BA BA AA BBM M M M M M+ = + +M  (11) 

The elements of M for a single scatterer have the general asymmetric form [10] 

 ( )
( ) ( ) ( ) ( )( )

( )

( )

( )

( ) ( )

ˆ ˆ1 1ˆ ˆ ˆ ˆ ,   ,   ,   ˆ ˆ ˆ ˆAA AB BA BB
R RM T T R R M M M

T T T T

− +
+ − + −

− − − −= − = = − =  (12) 
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Consider elastic scattering where the transmission and reflection coefficient magnitudes are sym-
metric i.e. ( ) ( )

0T T T+ −= = , ( ) ( )
0R R R+ −= = , 2 2

0 0 1T R+ = but the forward and backward 

scattering phase shifts ( )±φ and ( )χ ± respectively are asymmetric. M  is then given by 

 

( ) ( )( )
( ) ( ) ( )( )

( ) ( )( )
( )

( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

/ 22 2 02
0 0

/2 0 0

/2 0

0 0

1

,   det
1

/ 2,   / 2 / 2

ii i i

i i

i i i

s

R
e T e R e e

T T
e e

R
e e e

T T

k d

χ χζ δ δ

φ φ φ φ

χ χ δ ζ

ζ φ φ δ χ χ ϕ ϕ

+ −

+ − + −

+ −

− −

− −

− −

+ − + − + −

 
− 

 = = 
 − 
 

= + + = + − +

M M
 (13) 

Equation (13) satisfies Eq. (9) for m=1 so a single isolated asymmetric scatterer is consistent with 
CoE. Evaluating the LHS and RHS of Eq. (11) using Eq. (13) gives 

 ( )
2

2 02 2
4

0

1 4 sinBB AB BA

R
M M M

T
ζ δ+ = + +  (14a) 

 ( ) ( ) ( )
2 2

24 0 02
4 2

0 0

det 1 4 sin 4BA AA BB

R R
M M M D

T T
ζ δ+ + = + + +M  (14b) 

 ( ) ( ) ( )( )2
0cos cos 2 cosD Rδ ζ δ δ= + −  (14c) 

CoE requires 0D = . The solution ( )cos 0,  / 2δ δ π= = ±  independent of wavenumber corresponds 
to symmetric scattering and coincides with the condition for BFW in an infinite periodic structure. 
The other solution ( )0,  cos 0D δ= ≠ can hold for certain discrete wavenumbers since ζ depends on 
spacing d independent of asymmetric phase shift parameter δ. More generally, at any other wave-
number, two asymmetric scatterers, even if they satisfy CoE when isolated, do not satisfy CoE as a 
pair of interacting scatterers. A potential solution to this problem introduced in previous papers for 
infinite asymmetric periodic structures [8, 10] is applied and discussed further in Section 3.2. 

3.2 Incoherent waves between two asymmetric scatterers 
Previous work showed that asymmetric scatterers in an infinite periodic structure satisfy CoE if 

the backward wave is not only a result of scattering but introduces and additional phase shift ψ  
where Eq. (2) is modified to ( ) ( )

1
i

n nB e Bψγ− −−
+ = . This is equivalent to transforming Eqs. (13) and (14a, 

b, c) by / 2 / 2ζ ζ ψ θ→ − = where / 2ψ cancels the sk d term in phase ζ and makes the phase dif-
ference θ independent of the spacing d  between scatterers. One possibility is the offset of δ from 

/ 2π±  causes phase randomisation from multiple reflections between scatterers. In any case ψ de-
pendence on d cannot be a property of individual scatterers but must be a wave decorrelation phe-
nomenon for pairs of scatterers. Then energy transfer between a pair of asymmetric scatterers does 
not exhibit the wavenumber dependent maxima and minima of symmetric scatterers ( / 2δ π= ± ), 
and by the definition in Section 1 is incoherent.  

The additional phase shift ψ  is equivalent to modifying M to M where 
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( ) ( )
( ) ( )( )

/ 2

/2

det det

i
AA AB

i
BA BB

i

e M M
M e M

e

ψ

ψ

φ φ+ −

−

−

 
=  
 

= =

M

M M

 (15a) 

leading to the CE for M  

 

( )

( )

2

/2

/2 /2

2 det 0

1
2

i

i i
AA BB

e

e M e M

ψ

ψ ψ

γ γ

γ γ

Γ

Γ

−

−

− + =

=

= +

M

 (15b) 

Essentially the same transformation has been applied to infinite asymmetric periodic structures [10]. 
 
The CoE requirement ( )0,  cos 0D δ= ≠  of Eq. (14c) becomes 

 ( ) ( )2
0cos cosRθ δ δ+ =  (16a) 

with two solutions 
 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 42 2
0 0

2 4 2
0 0

cos cos sin 1 cos

sin sin cos cos 1 cos

R R

R R

θ δ δ δ

θ δ δ δ δ

±

±

= + ± −

= − + ± −
 (16b) 

The ratio of forward transmitted and incident fluxes has two possible values 

 
( )

( )

2

3

2 2
0 21

4
0

1

1 4 sin
2

A

RA
T

θ δ

+

+
±

=
 + + 
 

 (17a) 

 
( )

( )
( ) ( ) ( ) ( )

2

3

2 2
2 40 2 21

0 04
0

1

1 2 1 cos sin 1 cos

A

RA R R
T

δ δ δ

+

+
=

 + − + ± − 
 

 (17b) 

For lim / 2δ π→ ± these two solutions for asymmetric incoherent scattering match the maxima and 
minima for coherent symmetric scattering with / 2δ π= ±  but have infinite bandwidths and do not 
oscillate with wavenumber. The same effect is found for the two non-BFW solutions of an asym-
metric infinite periodic structure and BFW for a symmetric structure [6].  Unsolved is a more de-
tailed theory for asymmetric scattering that can give a physical origin for cancelling phase ψ and 
answer what asymmetric scatterer properties determine which of the two solutions apply. Interest-
ingly for 0d → coherent scattering itself becomes incoherent and using the proper-
ty ( ) ( ) 0φ φ+ −+ = of refractive media [6] coincides with the incoherent solution with the smallest 
forward scattering. Note that for asymmetric magnitudes of the scattering coefficients 

( ) ( )T T+ −≠ and ( ) ( )R R+ −≠  the PSW is found to be uniquely the incoherent energy wave (IEW) 

model [10].  
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4. Energy propagation in a finite 1D periodic structure 

Denote the +x direction energy flux1 in the nth cell for the SW as ( ) 2+
nA  and the reverse flux as 

( ) 2

nB − . These fluxes transition at scatterers according to a 2x2 asymmetric scattering matrix E and 

hence can be applied to a finite periodic structure. Since energy fluxes are incoherent, CoE satisfied 
for a single scatterer (symmetric or asymmetric) guarantees that CoE is also satisfied for any m scat-
terers. The elements of E are interrelated by CoE similar to Eq. (9). 

Two functions ∆ and Ω arise in the CE for the eigenvalues ξ (energy flux persistence) 
for E and µ ( energy flux reflectivity) for a matrix Z that is derived from E using a relationship be-
tweenξ and µ from CoE [6, 10]. From the matrix E the CE forξ is 

 ( )

( )

2

det 0

2 det 0
1
2

AA AB

BA BB

AA BB

E E
E E

E E

ξ
ξ

ξ ξ∆

∆

− − 
= − − 

− + =

= +

E  (18) 

The CE forξ  can be transformed to this CE for µ  

 
( )

( )

( )

2

1

det 0
1 det

2 det 0

det

1
2

AA

AB AB

BB

AB AB

BA

AB

BB AA

AB AB

E
E E

E
E E

E
E

E E
E E

µ

µ

µ µΦ

Φ

 + − 
  =
 

− 
 
− + =

= −

 
= − 

 

E

Z

Z

 (19) 

The elements of E and Z depend on the energy scattering model. For instance the IEW model for 
generally asymmetric and inelastic scattering gives [10] 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 2

2 2 2 2 2

/ ,   /

/ ,   1 / ,   det /

AA AB

BA BB

E T T R R T E R T

E R T E T T T

+ − + − − − −

+ − − + −

= − =

= − = =E
 (20) 

For asymmetric scatterers, ( )det 1≠E and ( )det 1≠Z . Equations (18) and (19) are symmetrized 
by the transformations 

 
( ) ( )

1 1,   
det det

ξ ξ ∆ ∆= =
E E

   (21a) 

 
( ) ( )

1 1,   
det det

µ µ Φ Φ= =
Z Z



  (21b) 

1 The SW phase speed in the definition of flux cancels out of the resultant equations and so is omitted. 
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BFW, non-BFW and IEW formulae for ∆ and Ω in terms of ( )T ± , ( )R ± and energy loss parame-
ters ( )σ ± are given elsewhere [6,10]. Previous papers also pointed out the “mirror” symmetry rela-
tionship ξ µ


 between persistence and reflectivity for structures that differ only by their inter-

change of ( )T ± and ( )R ±  [9, 10]. Another manifestation of the mirror symmetry is that Z is derived 
from E by the interchanges ( ) ( )T R± ±

 .  
   

5. Discussion 

This paper shows that scattering methods for deriving PSW properties for infinite periodic struc-
tures are extended to finite periodic structures using a 2x2 scattering matrix M . Cell independent 
PSW for an infinite periodic structure are then shown to be the eigenvectors of M . To generate 
PSW vectors that are eigenvectors requires energy sources with particular properties, such as 
sources placed at both ends of a finite periodic structure. More generally, PSW vectors are superpo-
sitions of the two eigenvectors. 

This paper shows that coherent wave propagation is a feature of periodic structures with only 
symmetric scatterers, whereas to satisfy CoE two or more asymmetric scatterers must modify the 
SW between them to cancel phase spatial dependence. This is perhaps phase randomisation by mul-
tiple reflections between asymmetric scatterers. A more detailed physical model of this effect than 
what scattering theory delivers is needed. Such a model should also resolve what properties of an 
asymmetric system that determines which of the two possible solutions apply in the case of sym-
metric magnitudes of scattering coefficients but asymmetric phase shifts.  
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