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Abstract

This paper describes progress on a two dimensional numerical simulation of acoustic wave propagation
that has been developed to visualize the propagation of acoustic wave fronts and to provide time-domain
signal representation in shallow water.  It is intended that an extension of the work presented here, to
account for three-dimensional effects, will later be compared with field results.

The numerical simulation of shallow water acoustic propagation has given rise to a wide variety of
modeling techniques with various degrees of accuracy. One technique, involving finite difference
methods, is more commonly used in the description of seismic propagation but also occurs in the shallow
water propagation literature. This word reported here involves the application of finite difference
techniques to model propagation in the time domain, together with associated code to allow wave front
visualization.

Introduction

Many researchers have developed numerical
interpretations of the wave equations suited to acoustic
and seismic propagation (Alford, Kelly, and Boore,
1974; Kelly, Ward, Sven Treitel, and Alford, 1976;
Cerjan, Kosloff, and Reshef, 1985; Williams, Rechtien,
Anderson, 1996; Wu, Lines, and Lu, 1996, Keiswetter,
Black, and Schmeissner, 1996; Aleksev, Mikhailenko,
1999). The numerical modeling of seismic data has
been used to support interpretations of field data, to
provide synthetic data for testing processing techniques
and acquisition parameters, and to enhance
seismologists’ understanding of wave propagation
(Keiswetter, Black, and Schmeissner, 1996). For these
applications finite-difference methods have often been
used.

This report terms the wave equations suited to waves in
fluids, acoustic waves and wave in solids such that both
shear and compressional, deformations are accounted
for are termed elastic waves.  Most seismic modeling
necessarily uses the elastic wave equations. (Kelly,
Ward, Sven Treitel, and Alford, 1976) but the acoustic
wave equations have also been used for geophysical
modeling techniques (Alford, Kelly, and Boore, 1974).
The elastic wave equations are needed to fully account
for wave propagation in the seabed but an acoustic
wave approximation is often used for seabed sediments
when shear velocities are low.

This paper reports on progress in developing a
computer program, which deals with the two-
dimensional numerical modeling of acoustic wave
propagation in shallow water.

Key features of the model at present are:

(i) The use of acoustic wave equation

(ii) Time domain modelling

(iii) A comparison of the use of 2nd and 4th order
accuracy

Theory

Acoustic wave equation

A two-dimensional acoustic wave equation can be
found using Euler’s equation and the equation of
continuity (Brekhovskikh, 1960).
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Where u is the particle velocity, p is the acoustic
pressure, ( )zx, ρρ =  is the density, and ( )zxcc ,=  is the
velocity of the acoustic wave in the acoustic media.
Substitution of the divergence of the Euler equation
and the time derivative of the equation of continuity
yield,
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Where ( )rδ  is the Dirac delta function associated with

the position of the source in space and ( )tf  is the
source function.

For homogenous media, the acoustic wave equations
can be simplified as follows,
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Finite-difference solution

Acoustic wave equation

Finite-difference methods can be applied to the scalar
acoustic wave equation. The second time derivative
and first spatial derivative of the wave equation can be
approximated using a second order central difference
approximation as follows,
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Where,
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An acoustic wave equation for homogenous media can
be approximated in rectangular coordinates system by
the second-order and fourth-order central difference
(Alford, Kelly, Boore, 1974; Wang, Personal
Communication, 2000) as follows,
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Where hzx =∆=∆  is the grid size in the x and z
directions, respectively and t∆  is the time step.

Another alternate expression for higher accuracy uses
the fourth-order central difference scheme of the
acoustic wave equation. It is more accurate than
second-order central difference scheme.
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Where: 
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A finite-difference scheme will be stable if 2/1=γ

for equation (9) and 8/3=γ  for equation (10)
(Alford et. al., 1974)

Boundary conditions

Where transparent boundary conditions are involved,
we use the method due to Reynolds (1978).

Transparent boundary condition

Left side boundary
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Right side boundary

( )( )1
,

1
,1,1,,

1
,,,1

1
,1

 
 −−

−+

−
+

+
+

−−−
∆
∆

+

−+=

k
jn

k
jn

k
jn

k
jnji

k
jn

k
jn

k
jn

k
jn

pppp
x
t

c

pppp
          (12)

Surface side boundary
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Bottom side boundary
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Nonreflecting boundary condition

We are at present investgating the approach due to
Cerjan et al. (1985) which may be summarised as
follows

The pressure amplitudes outside the boundary lines
must be multiplied by G factor (Cerjan, et.al.1985).

( )[ ]{ }220015.0 iEXPG −−=                (15)

Where: 201 ≤≤ i

This gives a value of 1 for 20=i or at the nearest
boundaries with boundary lines and a value of about
1/250 for 1=i  or at the outer boundaries.

Source function

As the source function f(t), a single cycle sinusoid was
used.

Results

We present here some of the results of the numerical
modeling comprising a comparison between the finite-
difference results from second order (7) and fourth
order approximations (10) using the transparent
boundary condition. The wave front results are also
compared with some original results from related
acoustic wave simulation work that has been developed
by Wang.

                  Figure 1.a: (2nd order)

                Figure 1.b: (4th order)

                  Figure 2.a: (2nd order)

                  Figure 2.b: (4th order)
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                 Figure 3: t = 5 msec (2nd order)

                  Figure 4.a: t = 50 msec (2ndorder)

                  Figure 4.b: t = 50 msec (4th order)

                  Figure 5.a: t = 85msec (2nd order)

                 Figure 5.b: t = 85 msec (4th order)

                     Figure 6.a: t = 50 msec (Wang)

                  Figure 6.b: t = 60 msec (Wang)

Figure 1.a, 1b, 2a, and 2.b. show wave front simulation
results in a homogeneous space represented using 101
x 101 grid points with c = 1500 m/s, ρ = 1025m3/kg,
∆x=∆z=1m, ∆t= 0.025msec with a single sinusoid
signal of source amplitude A = 2 and frequency (f) =
100Hz. Some reflections are observed. Figure 3 shows
the source position used in the simulations represented
in figues 4 and 5. Figures 4.a, 4.b, 5.a, and 5.b show
the results using 201x201 grid points in a two-layer
environment. Velocity c and density ρ in the upper and
lower layers are 4000 m/s, 1300 m3/kg and 6000 m/s,
1800 m/s respectively. Here ∆x = ∆z = 2.5 m, ∆t =
0.025 msec with source amplitude A = 2 and frequency
(f) = 400Hz. Figures 6.a and 6.b show acoustic wave
front simulation results using 512 x 512 grid points,
due to Wang. The acoustic velocities in upper and
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lower layers are 4000m/s and 6000m/s respectively but
with constant density throughout. Figures 4.a – 5.b
show evidence of dispersion, presently attributed to
grid size effects. The effects of incomplete boundary
transparency are still apparent. The 4th order results
show somewhat less dispersion than those arising from
the 2nd order computations. The results also can be
compared with Wang’s results in figures 6.a. and 6.b.
.In all cases direct, reflected refracted and head waves
are observed.

Amplitude signals from receivers for the homogeneous
media case of figures 1 and 2 are shown as follows,

            Figure C.1: At position S=51,51;R=5

            Figure D: At position S=51,51;R=51,30

            Figure E.1: At position S=51,51; R=51,10

           Figure C.2: zoom C.1

           Figure D.2: Zoom D.1

           Figure E.2: Zoom E.1

Figures C.1, C.2, D.1, D.2, E.1, E.2 show in the time
domain the influences of dispersed waves and
transparent boundaries.

The range dependence of acoustic pressure is shown in
figure F. This shows the average of the amplitudes of
the initial positive and negative pressure excursions P
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as a function of range r. The relationship P(r) may be
expressed by equation (16),

braP .=             (16)

Curve fitting yields a, b and associated correlation
coefficient as shown in the table 1,

Order a b R2

2nd 1.2527 -0.4832 0.9982
4th 2.6650 -0.4471 0.9993

Average 1,9589≈2 -0.4651≈-0.5 0.9993
Table.1: Coefficients a and b

Coefficient b is close to the – 0.5 value expected for
cylindrical spreading.

Conclusions

We have developed 2-D acoustic finite-difference
codes for second order in time and second or fourth
order in space to model acoustic wave propagation in
heterogenous media.

We have presented a comparison between wave fronts
developed using 2nd order and 4th order approximations
to the acoustic wave equations, shown dispersed wave
problems and partial transparent boundary effects. The
acoustic modeling shows the expected direct, reflected
and refracted and head waves patterns in a two-layer
space.
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