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Abstract

The dynamics of empty and gas filled cavities are reviewed from which estimations are made about source levels
and spectra for cavities of particular size, depth and internal gas type and pressure. Household light globes and
specially manufactured evacuated spheres were imploded at depths of 1m to 40 m and the pressure–time series
and spectra of the implosions are presented.

The internal pressures of the unbroken vessels are estimated based on the bubble resonance frequency and
implosion depth. Source levels and bubble resonance frequencies obtained from experimental results are
compared with theoretical results derived from implosion depth and estimated initial internal gas pressure. The
observed variability in source level, bubble resonance frequency and the presence of sub harmonics of the bubble
resonance frequency are discussed.

Introduction

Household light globes have been used with increasing
popularity as an acoustic source. Unlike an airgun
source, the initial gas pressure in the bubble is much
lower than the ambient pressure and the bubble reaches
equilibrium after a small number of oscillations. (The
bubble pulse  is  less than 100 ms at 40 m.) The peak
pressure developed is typically around 150 dB re 1 µPa
for implosions at 40 m depth. Higher peak levels may
be obtained by using vessels with a lower internal gas
pressure.  A low gas pressure also results in a short
bubble pulse which is desirable for easier
deconvolution of received signals and their associated
multipaths, but shortening the pulse causes the energy
to be distributed over a wider frequency band.  Glass
spheres with very low internal gas pressure were used
as an alternative to light globes to investigate the effect
of a lower internal gas pressure on radiated spectra and
pulse duration.

Bubble Dynamics

The Rayleigh Collapse

Assuming sphericity at all times, the collapse of a
vacuous cavity in an incompressible fluid was
determined by Rayleigh (1917). The work done by the
hydrostatic pressure in contracting the radius of an
empty cavity from a maximum (starting) radius Rm to
an instantaneous radius R is equivalent to the kinetic
energy of the liquid. The kinetic energy of the liquid
can be predicted by integrating the spherically
symmetrical energy distribution over shells of liquid of
thickness ∆r, mass 4πr2ρ∆r, and speed dr/dt. The work

done by the hydrostatic pressure p0 is (4/3)πp∞(Rm
3 –

R3). Maintaining that the fluid is incompressible, at any

time ∆t, liquid of mass trr ∆&ρπ 24  flows across the

surface with radius r. Considering the flow at the cavity
boundary,
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The kinetic energy can now be evaluated as 322 RR&πρ .

The wall velocity, R&  can be found to be:
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The positive and negative roots correspond to the
expanding and collapsing cavity respectively.
Integrating the wall velocity with respect to time gives
the collapse time.
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Withholding the assumption of an incompressible fluid,
the derivation breaks down as dR/dt approaches the
speed of sound in the liquid. This can be seen from
equation (3), where as R becomes very small, the
collapse speed becomes very large until finally when
R=0, the result is undefined.

Collapse of a Cavity Containing Gas

The gas inside a cavity will be compressed as the
cavity collapses, thus retarding the collapse. The cavity
will reach a minimum volume at some maximum gas
pressure and then expand again until the gas pressure is
well below the ambient liquid pressure and then
collapse again, oscillating about some equilibrium
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volume. Assuming no heat flow or dissipation, the gas
pressure may be expressed as

γ3

, 
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where γ is the ratio of specific heats of the gas in the
cavity. The energy calculations now include the
compression of the gas (which has pressure pg,m),
represented by the last term in the conservation of
energy equation (5). Assuming surface tension and
vapour content is minimal and the external pressure p0

is constant, the energy equation for the bubble collapse
is:
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The positions of maximum and minimum cavity radius
are at Rm and at Rmin, at which time dr/dt = 0. At the
minimum radius, equation 5 can be simplified to

( )
( )10

13

, −=




 −

γ
γ

p
R

R
p m

mg             (6)

The minimum radius is then:
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The Oscillating Bubble

Continuing with the assumption of a spherical bubble
in an ideal fluid, a simple analogy can be made
between the pulsating bubble and a bob of mass m
attached to a spring. Using this analogy the stiffness,
resonant frequency and the energy of the oscillator can
be determined. The restoring force arises from the
compressibility of the gas in the cavity and the inertia
of the system is associated primarily with the moving
liquid. The main flow of energy is between potential
and kinetic energy, which is dependent on the
acceleration of the bubble volume.
The bubble wall describes a motion Rε = -Rε0 e

iωt about
a mean radius R0 and with resonance frequency ω0 and
displacement Rε0. The kinetic energy of the liquid is
then:

( ) 224
2

1
rdrr

R

K &∫
∞

= ρπφ             (8)

which may be expressed as 232 RRK
&ρπφ = .  φK is at

a maximum at the equilibrium bubble radius Rε0, At
this position, dr/dt is also at a maximum, hence
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Using the bubble energy equation (5) it can be shown
that
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This resonance frequency ω0 requires that heat
exchanges and surface tension effects are negligible.
This has been shown to be an adequate approximation
for bubbles as small as 1mm in diameter. (Leighton,
1997).

 If the pulsating bubble is considered to behave as a
harmonic oscillator, the ‘spring stiffness’ must be
defined: Consider a bubble in a liquid of static pressure
p0 which collapses from an equilibrium volume of V0

by ∂V to V, so the radius changes from R0 to R0 - Rε.
The gas pressure therefore increases from pi,e = p0 +

2σ/R0 by ∂pi to pi.

If piV
κ = a constant then
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If Rε << R0  then ∂V = 4πR0
2Rε

and
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The force necessary to change the bubble volume is
due to the excess pressure acting over the surface area
of the bubble. Using equations 12 and 13;

επκπ RpRpRF iiA 0
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The stiffness of the bubble can now be written as

eipRk ,012πκ=                                  (15)

If the surface tension is omitted, then
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The inertia of the system is provided by the fluid mass
flux in the vicinity of the pulsating cavity. This mass
flux can be expressed as
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Hence the equivalent mass of the system is 3 times the
mass of the water displaced by the bubble at
equilibrium.

i.e.  3
04 Rme πρ=            (18)

Damping

The formulas shown above describe a bubble which
pulsates as a harmonic oscillator with no damping. The
bubble is subject to damping, which is manifested in
three ways:
• Energy radiated from the bubble in acoustic waves

(radiation damping)
• Energy lost through thermal conduction between

the gas and the surrounding liquid
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• Work done against the viscous forces at the bubble
wall (viscous damping)

The damping constant δ is defined for damping at the
resonance frequency as δ = 1/Q, where Q, the Quality
factor, is  ω0 / ( ½ power bandwidth).

The decay of bubble oscillations due to the radiation of
sound energy is independent of bubble size, unlike
thermal and viscous damping which increase with
decreasing bubble size. The loss factor due to radiation
is equal to the radiation efficiency of the vibrating
sphere.

i.e. 
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As the bubble pulsates, more work is done by the liquid
compressing the bubble than by the gas expanding the
bubble. For energy to be conserved, energy must be
released from the gas into the liquid upon expansion,
and this is manifested in heat energy. This loss of heat
energy to the liquid represents thermal damping. For an
ideal gas where PVκ = constant and TVκ = constant
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where lD is the thermal boundary layer thickness and
R0/lD ≥ 5
At the resonant frequency ω0,
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and Kg is the thermal conductivity of the gas, ρ1Cp is
the specific heat capacity of the gas for a constant
pressure.

The Navier-Stokes Equation for a fluid of constant
viscosity is
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If the fluid is incompressible then ∇
rr

.v =0 and if the

fluid is irrotational then 02 =∇ v
r

, so equation (21)
reduces to
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This suggests that there are no net viscous forces acting
in an incompressible viscous liquid around the
pulsating spherical bubble. Momentum transfer does
occur through viscosity, but no net viscous force acts
within the body of the liquid.  Net viscous forces do
occur at the bubble wall, where they result in an excess
pressure. Volume elements at the bubble wall decrease
in thickness and increase laterally as the bubble
expands. In an incompressible fluid, these distortions
must be the result of viscous stresses. As a result, there
is an energy loss on compression. The viscous damping
coefficient was derived by Devin (1959) as
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where 
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Total Damping Constant

The damping contributions due to radiation, heat and
viscous losses are additive. The total damping constant
at resonance is therefore:
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Pressure Radiated by a Spherical Pulsating Bubble

Firstly, consider the pressure radiated by a cavity with
a non-varying internal pressure, so that the radiated
acoustic pressure is governed by the interface
movement only. The motion of the cavity wall may be
described by

ti

titi

ti

eUiR

eUtRiR

eRRR

ω

ωω
ε

ω
ε

ω

ω

0

0

0

=

=−=

−=

&&

&           (25)

where the frequency of oscillation is ω and the
amplitude is U0.
The pressure at the bubble wall varies with time as
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where β relates to the damping constant, such that

m
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and χ0 relates to the phase of the pressure wave, such
that
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Considering Bubble Acceleration

Rearranging equation (5)
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hence the acceleration during bubble compression
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Substituting equation (5) into equation (25) yields
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During expansion, Rm is the minimum radius, and pg,m

becomes pg,max.

Vokurka (1985) relates equation (25) to the equilibrium
radius:
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with initial conditions for R(t) being R(0) = Rmax and

0)0( =R& .

Vokurka (1985) showed that the pressure in the liquid
at the bubble wall, when observed in the far field, is
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Experiment

Two experiments were conducted: one in the sheltered
waters of Jerviose Bay, W.A in a water depth of 10m
and another just west of Rottnest Island, WA, near the
100m contour. The light globes and glass spheres were
imploded using the device shown in figure 1 which is
similar in design to that described by Heard et al,
(1997) and by Chapman et al (1977).

Figure 1 - Imploder device used to break light globes and
evacuated spheres

Data Acquisition

For both trials, the receiver used was a Brüel &Kjaer
8100 Hydrophone, with a sensitivity of –206 dB. The
signal was recorded on a Sony portable DAT recorder
at 22050 Hz. The analog signal from the DAT was
resampled at 22050 Hz using a PC soundcard. Levels
were calibrated using a white noise source at 96.2 dB
re 1 µPa. Maximum pressure levels were retrieved
before any filtering was done. Signals were then
Butterworth high pass filtered at 15 Hz to eliminate
surge noise and other unwanted low frequency
components. The power spectrum densities were then
calculated using 14 bit FFT’s, using a boxcar window
of the same width, overlapped by half the window
width. The spectra were then normalised to energy
spectrum densities, referenced to 1 µ Pa2/Hz2.  These
curves were smoothed with a 5 point running average
filter as the output was still very spiky. The resonant
frequency was then located.

Results
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Figure 2 – Light globe at 5 m depth
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Figure 3 - Light globe at 40m depth
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Figure 4 - Evacuated Sphere at 40m depth

If the resonant frequency is determined using
Minnaert’s (1933) equation, it is dependent on the
equilibrium radius of the cavity, which may be found if
the initial internal pressure of the cavity is known. For
the theoretical resonant frequencies shown in Figure 5,
an average of pi  the internal pressures for the light
globes  (except those greater than 1 atm) was used.
This average was 55% of atmospheric pressure.
Calculated resonant frequencies fall close to the
measured values, indicating that the adiabatic
assumption needed to determine pi is adequate for gas
filled cavities in seawater.

Resonant Frequency vs Depth
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Figure 5 - Primary resonance of bubble oscillations as a
function of depth.

This relationship can be found by applying the gas law
γγ

00VpVp ii =  to find R0 as a function of p0 and pi and

substituting into Minnaert’s resonance equation.
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The value used for γ which gave resonant frequencies
closest to those which were measured experimentally
was γ = 1.40. This ratio of specific heats applies to
diatomic gasses.  If pI, Ri and γ remain constant for all
d, then f0 is dependent on p0 only. Hence:
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where d is the depth in meters. The value for k can then
be determined from the measured data as
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Using an average value for k, the resonant frequency
was found to have depth dependence:
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This relationship is shown as a dashed curve in Figure
5. The measured resonant frequencies were consistent
with Heard et al’s (1997) empirical formula for the
resonant frequency of light globe implosions at a given
depth:
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Using g = 9.8 m/s2 and d in meters, the constant of
proportionality used in equation (32) was 2.5.
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This relationship is shown as a solid curve in Figure 5.

Source Level vs Depth

170

180

190

200

210

220

0 10 20 30 40

depth (m)

S
o

ur
ce

 L
e

ve
l (

dB
 r

e 
1 

uP
a

)

Log. (Heard et al)

Log. (eqn.31)

Log. (pulsator)

Figure 6 – Source Level vs. Depth

The equation used to calculate the peak pressures of the
globes (equation (26)) is that of a rigid pulsator and
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does not account for the changing pressure within the
bubble. Predicted source levels using equation (26),
illustrated by the hashed curve in figure 6, are within
the lower limit of experimental values for light globes
at depths no greater than 25m.

( )dSLei pulsator log25.5180. += dB re 1 µPa @ 1m

The source levels derived from the measured peak
pressures received due to light globe implosions varied
by up to 10 dB at each depth, whereas the evacuated
sphere levels varied by only 1 dB at 7m and at 40m.
Predicted source levels for the evacuated spheres are 14
dB lower than measured levels at 7m and 20 dB below
the measured levels at 40m.  If internal pressure
changes are taken into account and equation (31) is
used to predict received levels, as illustrated by the
dashed curve in figure 6 the predicted curve is much
steeper than that which is indicated by Heard, et al
(1997) or by the measured values. Using this model,
the source level varies with depth as

( )dSLa log15183+= dB re 1 µPa @ 1m

Predicted evacuated sphere source levels, using this
method, were overestimated by ~ 40 dB  at 7m and at
40m.

Predicting Bubble Motion

The source levels predicted by equation (31) are
generally an overestimation of the measured levels,
however an indication of the bubble radius as a
function of time can be attained using equations (21),
(25), (27), (29) and (30) from which the pressure
equation is derived. Equations (25) describe the
bubble’s oscillation as simple harmonic. The damping
factor of equation (24) is included in equation (26).

Bubble oscillations are not simple harmonic and bubble
wall dynamics give rise to an asymmetry in the positive
and negative pressure phases This asymmetry, which is
described by Rayleigh’s equation for bubble
oscillations, may be understood by applying energy
conservation constraints to the system. Equation (5)
describes this and the equation for the squared velocity
of the bubble wall and equation (28) is a rearrangement
of the energy conservation equation (5). Two models
were used to simulate the implosions, one of which
incorporated the adiabatic change in pressure within
the bubble, and one which treated the bubble as a rigid
pulsator. Peak pressure levels calculated using the rigid
pulsator model were generally lower than the measured
levels and those calculated using the more
sophisticated model were much higher than measured
levels.

The spectra shown in figures 2, 3 and 4 show an
interesting harmonic structure, particularly in the case
of the evacuated spheres. Part of this structure is likely

to be present at the source and due to harmonics of the
bubble volume. Minnaert’s (1933) resonance frequency
is proportional to the equilibrium bubble radius and
describes the principal resonance of a bubble of that
size. It is unlikely that the bubble will collapse
uniformly and remain always spherical. More probably,
a cavity starting with a radius of 3 to 4 cm will collapse
with multiple spherical harmonics (Leighton, 1997), as
the surface tension effects (which act to retain
sphericity) are not sufficient to dominate over external
forces at these scale lengths. Each of these harmonics
can be treated as a small bubble, with a resonant
frequency and amplitude related to the order of the
harmonic. Part of the harmonic structure is also due to
interference from surface reflections of the signal,
which arrive at the receiver out of phase with the direct
signal.

For example, consider a source depth of 40m and a
receiver depth of 3m, seperated by a horizontal
distance of 10m, as was the case for the evacuated
spheres. The direct signal path has a length of 37.9m
and the signal path which involves one surface
reflection has a length of 43.8m. This difference means
that signals with λ = n(43.8-37.9) = 4.9n will be
attenuated due to destructive interference. This
wavelength corresponds to multiples of 311 Hz at the
measured sound speed of 1525 m/s. Figures 4 shows
nulls occurring at multiples of 316 Hz, but other
evacuated sphere spectra showed nulls occurring as
low as 250 Hz. This variation may be attributed to the
variation in receiver depth (and less significantly,
source depth), induced by platform movement.

Experimental Uncertainties

The environment at Jervoise Bay was very quiet in
comparison to the open water off Rottnest Island where
the second trial was undertaken. A great deal of low
frequency noise appeared on the original signals from
the second trial, which was filtered out. During this
trial, the hydrophone was hung off the side of the boat
and as the boat rolled and pitched, the hydrophone
depth would vary, introducing flow noise and depth
uncertainty. The receiver depth uncertainty was
determined to be no greater than ± 0.65m.   A sea
anchor was used to minimise drift. This contributed to
flow noise as the drift rate was less than the current
speed. The boat’s hull is fiberglass, and the hydrophone
cable was coupled directly to it. As waves interacted
with the hull, noise was transmitted to the hydrophone
via two channels: Transmission from the hull to the
cable, and reflection from the hull to the hydrophone,
only 3m away. Other noise sources which may have
contributed were:

traffic: 1 large ship was observed to pass within
approximately 2km of the experiment site
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Biological noise – Snapping shrimp produce very loud
impulsive clicks which may result in spikes in the
observed signals. (A typical shrimp snap of 160 dB re 1
µPa @ 1m at 100m depth would result in a received
level of approximately 120 dB re 1 µPa @ 1m.

These uncertainties in background noise levels can be
minimised by measuring the average noise level over a
period, calculating the spectrum density, and removing
the components which are likely to interfere with
results.

As seen in figure 1, the device used to implode the
globes and spheres has a brass plate above the mount
point for the globe. If the receiver is above the
imploder and the depression angle is large then there
will probably be significant reflection of the signal.
This was the case for implosions off Rottnest Island at
depths of 25m and 40m, and  at Jervoise Bay for
implosions at depths of 7m. The extent to which this
reflection has altered the source from the assumed
monopole has not been investigated. One solution is to
remove the brass plate from the imploder and replace it
with a structure similar to that on which the globe is
mounted.

There was also a large uncertainty in the depth of the
water column for those globes imploded at 1m, 5m,
15m and 25m during the second trial. Several light
globes were imploded at 1m depth as depth sounders
throughout the experiment, as the boat drifted. These
implosions had insufficient energy for a bottom-
reflected signal to be detected, but the implosions at
40m depth were sufficiently energetic.. Distances
calculated from the time delay between the direct
signal and the first bottom reflection of the globes at
40m indicated depths of around 110m. i.e. Time
difference between direct path and first bottom
reflection of last light globe implosion at 40m (B.5.5) =
0.09s. The direct path length is approximately 38m,
which at c = 1525 m/s, equates to 0.025 s. This makes a
total travel time of 0.115 s for the reflected path. This
time is equivalent to 178m. Add 43m for the receiver
depth and source depth and the result is twice the water
depth, plus a small amount due to the source – receiver
separation. These depths were also referenced from
local charts using GPS measurements.

The internal pressures of the light globes, calculated
from using Minnaert’s resonance equation and ideal
gas laws, was seen to vary from ~0.3 atm to ~0.9atm.
The (expired) globes imploded at Jervoise Bay had
internal pressures of around 0.75 atm, whereas those
which were imploded off Rottnest, which were new,
varied widely in predicted internal pressure. The
measured resonant frequency for globes imploded off
Rottnest Island was also quite variable at any given
depth, and this variation gave rise to the variation in the
predicted internal globe pressures. It is feasible that
internal gas pressure of light globes may vary, as the

purpose of the gas is only to prevent the filament from
being oxidised. An averaged internal pressure of 0.55
atm was used to model the depth dependence of source
level and resonant frequency.

The spectra of globes imploded at 1m depth 1 globe
which was imploded at 5m depth off Rottnest Island
exhibited 2 strong peaks. The second of these was
treated as the resonant frequency as it was consistent
with predicted results. The first peak is possibly a
subharmonic emission, which is possibly due to a
prolonged expansion phase and a delayed collapse
phase (Akulichev, 1967).

 Other theories for subharmonics are described by
Faraday (1831), Rayleigh (1883), Neppiras (1969), and
others who describe surface waves which propagate at
half the exciting frequency (due to the bubble
oscillations).

Large bubble theory is summarised by Eller and Flynn
(1969) wherein a  threshold pressure exists for bubbles
which may produce subharmonics at half the natural
resonance

 i.e.

   where log∆  is the logarithmic decrement

representing the damping of the oscillations.

Figure 2 shows a signal where it appears the bubble
begins to collapse but then expands again before the
collapse phase is completed. The process is repeated at
least 4 times. This behaviour may be present at the
source, in which case Akulichev’s theory fits, or it may
be due to surface reflections canceling out part of the
signal at the correct phase. The difference in range
between the direct path and the surface reflected path is
3.66m, which equates to 0.0024 s. The time difference
between the observed double peaks occurs at intervals
of ~ 0.025 s, ruling out surface reflections as the cause
for this effect. The logarithmic decrement for this
example is ~ 0.23, which corresponds to PA2 = 63845
Pa, given that the implosion occurred at 5m depth. The
recorded peak pressure was –358 Pa, at a range of
approximately 8.5m. Accounting for attenuation due to
spherical spreading, the source level was
approximately 3160 Pa, well below Eller and Flynn’s
subharmonic threshold.

Conclusions

The resonant frequency of light globe implosions was
found to be in good agreement with Heard et al
(1997)’s empirical equation, and fit well to theoretical
models which employed Minnaert’s resonance
equation and assumed that the pulsation of the cavity
volume was adiabatic.

π
log0

2

6 ∆
=

p
PA



Acoustics 2000 8

Peak pressure levels varied by up to 9 dB over the
sample tested and in order to find an empirical equation
for the source level vs depth relationship samples are
required over a greater range of depths. Heard et al
(1997)’s empirical equation fit the data adequately
well, although the data was spread sufficiently such
that a linear fit would also have appeared to be good. A
rigid pulsator model underestimated pressure levels as
depth increased, where bubble wall acceleration is
expected to be higher, and a model which incorporated
bubble wall acceleration overestimated pressure levels.

Evacuated spheres were very consistent in peak
pressure output at both depths at which they were
tested and a pressure/depth relationship could be
established given further tests at a range of depths.

Subharmonics were observed for implosion depths of
5m and Akulichev’s (1967) large bubble theory may
account for this.
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