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Abstract—Global Navigation Satellite System (GNSS) is a
valuable technology for a large number of maritime applications.
Other than providing the absolute positioning service, it aids
many demanding applications, such as precise docking, formation
of surface craft, autonomous vehicles, sinkage monitoring, etc.
GNSS carrier-phase-based algorithms provide high-precision
positioning solutions, but an integer number of cycles inherent
to the observed signal have to be resolved. A newly developed
GNSS carrier-phase ambiguity resolution method is tested. The
new method solves for the unknown number of integer cycles by
exploiting the known placement of the GNSS antennas aboard the
vessel. The a priori information on the antennas baseline separa-
tion is employed as a hard constraint. A simplified (linearized)
version of the method, suitable for large vessels, is also analyzed.
The new method was tested against the most challenging scenario
when processing GNSS data: single-frequency, single-epoch,
unaided ambiguity resolution. Through different tests, the high
performance of the new method is demonstrated: high fixing rate,
large robustness, and short time-to-fix after initialization, cycle
slips, and/or loss of locks. Considerations about the wide spectra
of maritime applications are given, and a specific experiment
is carried out to demonstrate the capabilities of the method for
navigation in shallow waters.

Index Terms—Ambiguity resolution, constrained least squares,
Global Navigation Satellite System (GNSS), shipborne attitude,
sinkage monitoring, under-keel clearance (UKC).

I. INTRODUCTION

LOBAL NAVIGATION SATELLITE SYSTEM (GNSS)
G technology is currently an essential instrument for
maritime applications. The global satellite coverage provides
a precise and timely absolute positioning service in any given
place on the globe. Very accurate real-time kinematic (RTK)
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solutions are used for applications such as precise docking
[1]-[3], under-keel clearance (UKC), dynamic draught esti-
mations [4], [5], guidance of autonomous surface vehicles
(ASVs) [6], formation control [7], attitude estimation [8]—[10],
guidance in shallow waters [11], etc.

High-precision GNSS-based applications make use of the
carrier-phase measurements. Next to the GNSS code signal,
the fractional part of the incoming GNSS signal phase is also
stored as an observable. However, the phase measurements are
ambiguous by an unknown numbers of whole cycles, which
have to be resolved to significantly augment the precision of
the range estimation. Carrier-phase integer ambiguity resolu-
tion is the key toward precise GNSS-based estimations of a
ship’s (relative) position and attitude. The task of resolving
the ambiguities as integers is nontrivial, especially if one aims
at reliable and fast techniques, ideally capable of providing
instantaneous (i.e., based on single epoch of data) correct
estimations. Various methods that differ in the way the problem
is approached and solved (see, for further discussion, [12]-[14]
and references therein) have been proposed in literature. This
contribution focuses on the integer least squares (ILS) principle
[15] that applies to linear systems where a subset of the un-
knowns is integer valued. A well-known implementation of the
ILS principle is the Least-squares AMBiguity Decorrelation
Adjustment (LAMBDA) method [16], a widely used ambiguity
resolution algorithm for unconstrained and linearly constrained
applications [17]-[21]. Although very effective, the method
is not specifically designed for nonlinear constrained appli-
cations, such as GNSS-based attitude determination, where
multiantenna frames of known geometry are employed. The
algorithm tested in this contribution is an extension of the
LAMBDA method, modified to rigorously incorporate the a
priori information on the antennas baseline separation.

By providing superior performance in terms of capacity of
fixing the correct set of integer ambiguities in a timely manner,
the baseline constrained LAMBDA (C-LAMBDA) method
brings numerous advantages. It avoids the use of multiple high
grade antennas/receivers to be placed aboard the ship to reliably
estimate its attitude; it provides a robust baseline solution in
the shortest time; it does not rely on any a priori information
from different sensors or dynamic model; and it is independent
from the platform dynamic.

The method is extensively tested on data collected on a vessel
sailing into a small canal in The Netherlands and on large con-
tainer ships approaching the harbor of Hong Kong. The accu-
racy of the solution is investigated with a static test, where the
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influence of the baseline length on the final attitude solution is
also given.

II. THE CONSTRAINED MODEL FOR THE GNSS OBSERVATIONS

Assume to track n + 1 GNSS satellites at two points (an-
tennas) aboard a ship. The raw GNSS carrier-phase and code
observations collected at each antenna are first differenced
between them [single differences (SDs)], then differenced
between two given satellites [double differences (DDs)]. The
differencing operation cancels out the receiver and satellite
clock errors and delays [22]. Furthermore, if the distance
between the antennas is shorter than a few hundred meters, the
difference between the atmospheric delays becomes negligible
[22]. The resulting DD observations (tracking N frequencies)
are cast with the linear(ized) system

E(y) =Aa+ DBb

D(y)=Qy a€Z™,  beR (b= (O
with £(-) and D(-) the expectation and dispersion operator, re-
spectively. The vector y (order 2N n) collects the DD phase and
code observations, whose dispersion is described by the pos-
itive-definite variance—covariance (v—c) matrix (},,. The un-
knowns are the Nn integer ambiguities in ¢ and the real-valued
baseline coordinates b. The antennas are assumed to be sepa-
rated by the known baseline length /: this constrains the base-
line coordinates. A and B are the design matrices, obtained as

follows:

single frequency: A= [ )\LOI } , B= [ g}
14n

0 G
dual frequency: A= ALiln 0 B= g
AnyIn G
(—uh)”
G= : (2)
(—um)”

where JA; is the carrier wavelength at frequency ¢. The rows of
matrix G correspond to the line-of-sight vectors u’. The least
squares solution of system (1) follows from minimizing the
squared weighted norm

ly — Aa — Bb|

o 2

agZNn ,lgleln%i,”bu:l Quy )
with || - |3 = ()" @ '("). Solving (3) is nontrivial, due to the
distinct nature of the constraints on the vectors of unknowns
a and b. Disregarding only the baselines length constraint, the
model is solved by applying the ILS principle [15]. Keeping the
nonlinear constraint on b, but disregarding the integer nature of
the ambiguities, makes (3) a constrained least squares problem,
for which many solutions are available (such as iterative algo-
rithms like the Gauss—Newton and the Newton methods, or tech-
niques based on the singular value decomposition (SVD) [23]).
Considering both constraints in an integral solution requires a
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nontrivial modification of the discrete search strategy necessary
to apply the ILS principle, which has to accommodate the ad-
ditional nonlinear geometrical constraint. In the next sections,
different solutions of the ambiguity resolution problem are re-
viewed and tested. It is stressed that the constrained solution is
given only for the single-frequency case (N = 1).

A. The Baseline Unconstrained Solution
Disregarding the baseline constraint in (3), the minimization
problem is formulated as

. 2
. ly — Aa — Bbl|5, . )

Among the different solutions available to approach this in-
teger minimization problem, the LAMBDA method is widely
used for its efficiency and quickness.

Three steps are necessary to extract the ILS minimizer of (4):
derive the float solution, search the integer minimizer, and adjust
the baseline solution according to the resolved integer ambigu-
ities.

First, the float solution of (4), without considering any con-
straint (so that & € R™V™, b € R?), is obtained by applying the
(weighted) least squares principle

ATQ A ATQ BT () _[ATQ,0
BTQ, A BTQ, !B \b BTQ,}

vy
The v—c matrices of the float solution (055, 7
obtained as

and Q;; are

ab?

Qaa Qdé — ATQ;ylA ATQ,;UIB - (6)
Qpa @l [BTQ A BTQ B|

Assuming the integer ambiguities ¢ as known, the (fixed) base-
line coordinates can be found by solving the system E(y —
Ad) = Bb, D(y) = Q. The fixed vector b(a) is related to
the float solution b as

ba) = (BTQ,}B) " BTQ, ) y—Aa) = b-Q;,Q;) (a—a)
Q)
with corresponding v—c matrix
Qiaybta) = @ip — Q4. Qaa Qi (®)
The precision of the adjusted baseline vector i)(a) is consider-
ably higher than the precision of the float solution b: the entries
of Q; (@)b(a) ATC driven by the accuracy of the phase observables
that are of two orders of magnitude more precise than the code
measurements [22].
The following step takes into account the integer nature of the
carrier-phase ambiguities: @ € Z™¥™. The minimization problem
(4) can be decomposed as a sum of squares [22]

i — Aa—DBb||?
aEZg}}};ERBIIy a—DBbll5, |
2
. ~12 N 2 7
- 2 —alz 4|6 —bH 9
QEZ%}?;ER;,(Ilellczu.ﬁlla ally, +] bla) QW&)) ©

where é is the vector of residuals. Without considering the con-
straint on the baseline vector, the last term on the right-hand
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Fig. 1. “Slices” of the contour surfaces Sa(x*) = {a € R”[[[|a — a||3,,, —x*| < €} and Sy (X*) = {a € R*[|C(a) — x?| £ ¢}, with e sufficiently small.
Each slice contains the float solution (center of the ellipsoidal search space). (a) Section 1 and 2 of the search spaces £ and (2. (b) Section 1-3 of the search

spaces §2 and 2. (c) Section 2 and 3 of the search spaces {2 and 2¢.

side can be made zero for any choice of a. The minimization
problem then reduces to
" s " 2
0= arg min la —allg,, - (10)
Closed-from solutions of (10) do not exist: the minimization
implies a discrete search strategy in an admissible set of integer
candidates (the search space) defined as
QUx*) = {aeZ™la - all3,, <x°}. (11
The search space is an ellipsoid, centered in ¢ and whose
shape is driven by the v—c matrix (J44. The size of the set is
limited by the scalar y, whose choice is fundamental: it has
to be small enough to limit the computational load, but large
enough to guarantee the nonemptiness of the set. It is demon-
strated in practice that bootstrapping a solution ¢ with weight
matrix Q;; provides a good choice for the initial size of the
search space: xj = ||@ — dl|7, .. The ambiguity search space
(11) usually has a significant elongation due to the covariance
properties of the double differenced ambiguities [22], which are
highly correlated. This results in an inefficient search for the in-
teger minimizer. The LAMBDA method overtakes the problem
by means of a decorrelation of the v—c matrix (J4; that smooths
the covariance spectrum, achieved by a linear transformation
that preserves the integer nature of the parameters. As a re-
sult, the search becomes much faster in the decorrelated space
and the computation of the integer minimizer is performed in a
timely manner.
The conclusive step is to adjust the float baseline vector ac-
cording to the extracted integer minimizer &

b=b(a) =b— Qp,Qua (@ — ). (12)

B. The Baselines Constrained Solution

For frames of antennas mounted on the same rigid body,
the baseline separation is employed as a hard constraint. This
strengthens the observation model, improving the performance
of the ambiguity estimation. The additional constraint is used
both in the derivation of the float solution and, most impor-
tantly, in driving the ambiguity search. Since the additional a
priori information is used to strengthen the underlying model,

the constrained solution is presented only for the weaker
single-frequency model (N = 1). R

The unconstrained float solutions @ and b are derived ac-
cording to (5). By using the same sum-of-squares decomposi-
tion given in (9), the minimization problem now reads

)
Qb(a)b(a)

(13)

a = arg 111%1 Cla)
o=y 3

— aro 1T A a2 7 _j
= arg win (Ha allg,, + Hb(a) b(a)

bla) = arg

min
® beRY||b)|=!

b(a) — bH2

Qi)(a)l;(a)

Note that the ambiguity objective function has become non-
quadratic in @ due to the presence of the second term. Other
ambiguity objective functions have been used in the literature.
However, none of these have the nonlinear constraints rigor-
ously incorporated into the ambiguity objective function. For
a comparison and discussion, we refer to [14].

The baseline term in (13) can no longer be made zero for any
choice of a, and its evaluation is necessary to the computation
of the cost function. The whole minimization process is compli-
cated by the coupling of the two terms in (13). The evaluation
of the cost function C'(a) requires the solution of a constrained
least squares problem to extract the term Z)(a,), adding computa-
tional load for each integer candidate [14]. The set wherein the
ambiguities are searched is no longer ellipsoidal

0“(x%) = {a € 7"C(a) < X°}. (14)

Fig. 1 shows the search spaces Q(x2) and Q¢ (x?) for a
simulated four-satellites scenario, after the decorrelation of
the ambiguities. The three sections of the 3-D contour sur-
faces are shown: these sections are “slices” of the contour
surfaces So(x*) = {a € R*|||la — al,, — x*| < ¢} and
Soc(x?) = {a € R"|C(a) — x?| < €}, with € sufficiently
small. Each slice contains the float solution (center of the ellip-
soidal search space). The nonellipsoidal search space 22 (x?)
is moon shaped, and it contains much less candidates for the
same .

Fig. 1 also visualizes a problem that arises with the con-
strained solution. Given a scalar y for which the set 2(x?) is
nonempty, the extensive evaluation of the set Q¢ (x?2) is highly
inefficient: for many integer vectors, the cost function C(a)
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might be unnecessarily computed. Moreover, the set 2 (x?)
might even turn out to be empty. The reason is that the second
term || b(a) — Iv)(a)||i,ﬁ(u)i‘(") largely amplifies the value of x* =
C(a) for integer vectors ¢ that provide a too large distance,
in the metric of Qj,;(,), between b(2) and h(2). Setting the
value of x? to guarantee the nonemptiness of the search space
proves to be nontrivial, especially for those cases where the
set of GNSS observations lacks sufficient strength, i.e., reduced
number of available satellites, single frequency.

The C-LAMBDA method [24] has been designed to
efficiently solve for (13). The search is made faster via the in-
troduction of novel search techniques as the search-and-shrink
approach [10], [14], [25], [26] or the expansion approach [13],
[26], [27]. These search algorithms adaptively adjust the size of
the search space by shrinking or expanding the set of candidates
as the search proceeds, working with functions that are faster
to evaluate than C'(a).

The two search strategies are based on the following property:
the norm ||b(a) — b”éf,(u)z((,) is bounded via the smallest (), )

-1

b(a)b(

2 2
_ 1)

Iy

2 2
_ z)

I

with C1(a) < C(a) < Cy(a). The expansion approach works
by enumerating all the integer vectors contained in a small set
of admissible candidates

O (x3) ={a€c2”|Ci(a) <xi} 20 (x3) (16

where the scalar xg is initially chosen small enough and itera-
tively increased until, at step s, the set Q1 (x?) turns out to be
nonempty. As the evaluation of C;(a) only involves the com-
putation of two squared norms, the enumeration proceeds rather
quickly. For each of the enumerated integer vectors in Q1 (x?),
the constrained least squares problem in (13) is solved and the
set Q€ (x?) is evaluated: if it is empty, the scalar ¥, is increased
t0 Xs+1 > X and the enumeration in €21 (x? ;) repeated, oth-
erwise the minimizer of (*(a) is picked up.

The search-and-shrink approach works in the opposite way.
The search space relative to the bounding function Cs(a) is de-
fined as

Qs (x5) = {a € 7"Ca(a) < x5} C Oc (xo) '))

where y is chosen large enough to guarantee the nonemptiness
of Q2(x?). The search proceeds by iteratively shrinking the set,
by means of searching for an integer vector a1 in 2(x?) that
provides a smaller value for X%, = Cs(as41) < Calas) =
x2, until the minimizer of C(a) is found. The minimizer of
C(a), which may differ from the one of Cy(a}, is then exten-
sively searched inside the shrunken set

Q) = {a € 77|C(a) < X°} 2 Qa(X?)

where ¥? = C(a), being @ the minimizer of Cy(a).
The two search strategies provide an efficient way of per-
forming the search for the integer minimizer of (13), by over-

and largest (Aas) eigenvalues of the matrix @ o 3

Ci(a) = [l — all3,, + Am (Hi)(a)‘

Co(a) = i — all?,. + A (H?)(a)‘ (15)

(18)

taking both the issues of fixing the initial size of the search
space, and speeding up the search avoiding the computation of
the constrained least squares minimizer a large number of times.
Both methods are less sensitive to the choice of the initial value
of x than the exhaustive search: the size of the search space is it-
eratively adjusted by expanding or shrinking, working on func-
tions that do not require the evaluation of a constrained least
squares problem. The two methods aim to have a final small set
€2(x?) where the integer minimizer of (13) is quickly extracted.

The sharpness of the selected bounds is an important aspect,
since tighter bounds effectively reduce the time dedicated to
the computation of (13), thus resulting in a faster global search
for the integer minimizer. Both techniques are proved to work
efficiently, with a computational load comparable to the one of
the LAMBDA method.

The advantage of the C-LAMBDA method lies in the major
strength of the functional model. The baseline coordinates are
constrained by the knowledge of the distance between the an-
tennas. Embedding this information in the ambiguity resolution
process enormously benefits the search for the correct integer
ambiguity vector. This allows to downgrade the GNSS equip-
ment requirement in case of configurations of antennas firmly
installed on a ship.

We used the baseline constraint above as a “hard” constraint.
If the need arises though, one can loosen the constraint and ob-
tain a weighted constrained ILS approach, as is shown in [14].

C. A Linearized Version of the Constrained Solution

For long baselines applications, e.g., big oil tankers or con-
tainer ships, a linearized version of (13) is worthy of considera-
tion. The linearized expression is derived from a Taylor expan-
sion of the objective function, based on the constrained ambi-
guity solution @ [14]. The constrained float estimates @ and b are
obtained from the unconstrained float solution according to [14]

min
bER3 ||b|=1

a=(ATQ,rA) " ATQ, My - Bb).

b= arg [

19

The linearized approximation of the cost function reads

Ca) =l — alfy,, + o) — ba)|

Qb(ayba)
~C@+ - o (050@) a-a) o)

where 92,C(a) is the Hessian of the objective function (13)
evaluated at a. The performance of (20) depends upon the base-
line length. The geometrical interpretation of (13) gives an ex-
planation to the latter statement: the nonlinearity of the con-
strained method is due to the curved manifold upon which the
baseline solution is projected. This manifold is the sphere of ra-
dius equal to the baseline length /. Thus, longer baselines yield
to smaller curvature and lower local nonlinearity. Following
(20), the minimization problem is reformulated as

2y

@ = arg i fla —allty 50 oy

Expression (21) is a quadratic integer minimization problem,
and the standard LAMBDA method applies. For its simplicity,
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the linearized method is of interest for those applications where
the baseline is longer than a certain threshold. This is investi-
gated during the experimental verification of the method.

D. Attitude and UKC Estimations

The precise baseline estimation, obtained by resolving the
carrier-phase ambiguities, enables to derive both the attitude of
the ship and its relative position with respect to a reference point
(RTK). The GNSS receivers placed aboard the ship also provide
absolute vertical motions relative to a fixed vertical reference
on Earth, to be used in combination with nautical chart datum
to estimate the UKC.

1) Attitude Determination: The attitude of a body is repre-
sented by defining a rotation matrix that linearly relates the base-
line coordinates expressed into different (orthogonal) frames.
For the applications of this study, the frames considered are the
east-north-up (ENU) frame enw and the local frame uvw. The
latter is so characterized: the first axis is aligned with the longi-
tudinal direction on the boat, the second axis is perpendicular to
the first, lying in the local horizontal plane, and the third axis is
directed so to form a right-handed orthogonal frame. The atti-
tude matrix may be expressed with different parameterizations,
such as the direct cosine matrix (DCM), the Euler angles, the
quaternions, or the Gibbs vector [28]. In this contribution, the
Euler angles parameterization is used, which has a direct phys-
ical interpretation. The rotation matrix is built performing three
ordered right-handed rotations, each one made about one of the
main axis, to coalesce the frame enw with the local frame wvw.
The sequence 321 is used: the first rotation (heading, ¥) is about
the third axis w, the second (pitch, #) is about the second axis
v, and the last (roll, ¢) is about the first axis u. The relationship
between the coordinates of the baseline ¢ before (b) and after
(by) the transformation is

b'=R-b, with R(v, 6, ) = Ra(9)Ra(0) Ry (). (22)

Given k observed baselines, the estimation of the rotation

matrix can be addressed as the solution of the LS problem

k
ReQ3x3 ; | b — R -by| with det([?) = +1

min

R=arg

(23)
where 03*3 denotes the class of the 3 x 3 orthogonal matrices.
Expression (23) is known in literature as the Wahba's problem
[29]. A closed-from solution of this problem is known and it is
reviewed in the Appendix.

2) UKC Estimation: The measured vertical position and at-
titude of a ship can be directly used in ship UKC monitoring,
when combined with the known local bathymetry. Ship UKC is
influenced by many factors, including squat (the bodily sinkage
and change in trim of a ship with increasing forward speed),
wave-induced heave, pitch and roll, as well as heel due to wind
or turning. A diagrammatic representation of the components
of ship UKC is shown in Fig. 2. The factors affecting ship
UKC are discussed in [30]. For ships in shallow areas where the
seabed is locally horizontal, grounding risk is determined by the
water depth beneath chart datum and the point on the ship’s keel
having the lowest vertical elevation at a given instant. For large
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Fig. 2. Schematic illustration of the components of ship UKC.

cargo ships, the baseline (keel) of the ship is flat over a large
area, such that any point around the perimeter of the keel can be
at risk of grounding, depending on the initial trim and the rela-
tive phasing between heave, pitch, and roll of the ship.

In areas where the seabed is locally flat but not horizontal,
the points around the perimeter of the keel are still most at
risk of grounding, though the varying water depth around this
perimeter must be considered. For an irregular seabed (e.g., con-
sisting of rock pinnacles), grounding may occur at any point
on the keel as the ship heaves, pitches, and rolls with forward
speed. A comprehensive UKC analysis should therefore con-
sider the vertical elevation of the entire keel planform, however
UKC calculations have previously been simplified to just con-
sidering the ship’s bow [31].

Some recent ship groundings in shallow water demonstrate
the need for a whole-ship approach to UKC. These include the
groundings of Eastern Honor [32], which occurred mainly at
the stern of the ship, Capella Voyager [33], which occurred at
the bow, and Jody F Millennium [34], which occurred at each
of the bilge corners (transverse extremities of the keel). All of
these ships had a positive “static UKC” (see Fig. 2), but squat
and wave-induced heave, pitch, and roll caused parts of the hull
to touch bottom and sustain significant damage.

As described in Section II-D1, the RTK GPS positions of the
shipboard receivers, together with their positions in the local
ship reference frame, are the inputs for attitude determination.
These are then transformed into the instantaneous heading,
pitch, and roll of the ship, together with the position in ENU
coordinates of a predetermined location on the ship (e.g., the
center of gravity). This process can now be reversed to find
the position in ENU coordinates of a matrix of locations on
the ship’s keel, starting with their position in the local ship
reference frame and using the instantaneous ship heading,
pitch, roll, and center of gravity position in ENU coordinates.
The ENU coordinates of a matrix of positions on the ship’s
keel can then be compared with the charted bathymetry of the
area (also in ENU coordinates) to determine the instantaneous
distance between each point on the keel and the seabed directly
beneath it.

The application of GNSS-based methods to ship UKC mon-
itoring is likely to become of increasing importance over the
following decade. The economies of scale with respect to ship
sizes, versus the cost of dredging, are leading to tighter toler-
ances on allowable static UKC. The methods used to determine
allowable UKC are only approximate, so much further vali-
dation and refinement of these methods is required, for which
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| Dual-frequency receiver |
Single-frequency receiver

— Unconstrained baselines
Length-constrained baselines

————>

Fig. 3. Scheme of a (a) classical RTK approach with four dual-frequency antennas/receivers compared to the (b) low(er)-cost solution, where the number of

dual-frequency equipment is halved.

GNSS is the ideal measurement tool. Real-time GNSS measure-
ments may also be used to help predict UKC a short time into
the future, providing a warning to the ship if UKC values fall
below those predicted in the passage planning.

Currently, most shipping channel bathymetry is provided at
a fairly coarse spatial resolution, such that depth changes over
the length of a ship cannot be accurately quantified. Therefore,
a conservative approach in the interim is to use the “least
depth” over the ship’s footprint, combined with the lowest
vertical elevation of the keel perimeter, in determining UKC.
As charted bathymetry improves in spatial resolution (limited
in many areas by the constant depth changes due to siltation),
the ENU coordinates of the seabed and instantaneous keel
platform locations can be used for determining instantaneous
UKC values over the entire hull.

3) Dual- Versus Single-Frequency GNSS Receivers Config-
urations: The strengthening of the underlying GNSS observa-
tion model via the inclusion of the nonlinear geometrical con-
straint allows to downgrade the equipment aboard the ship for
attitude determination and UKC estimation: only one dual-fre-
quency receiver is needed to reliably obtain an RTK solution,
and another two (or more) single-frequency receivers are em-
ployed to compute the attitude. Fig. 3 clarifies the distinction
between a classical RTK approach and the new method, which
exploits the known baseline separations. The second configura-
tion allows to halve the number of (expensive) dual-frequency
GNSS receivers aboard, maintaining the same reliability and ac-
curacy of the most expensive configurations.

III. EXPERIMENTAL TESTING

The methods presented were tested during different experi-
ments, carried out at different locations, time, and external con-
ditions. Different types of GNSS receivers were employed. A
static test in Perth, W.A., Australia, provided indication over
the performance achievable varying the baseline length and the
number of satellites in view. A kinematic test was performed
in The Netherlands, where a small boat was sailed along the
Schie Canal, Delft. The final test was performed in the harbor

of Hong Kong, where antennas installed aboard few large con-
tainer ships provided the precise position and attitude during the
inbound and outbound maneuvers.

Different performance indicators were extracted. First, it was
investigated the unaided single-epoch, single-frequency success
rate, i.e., the capacity of fixing the correct set of ambiguities
when processing single-epoch data, collected on GPS-L1 fre-
quency, without any external aid (e.g., inertial sensors, gyros,
etc.) or filtering. High values for this parameter mean higher
robustness and shorter times to fix. Quick recoveries of the cor-
rect ambiguities after a cycle slip or loss of lock are of primary
importance for those applications that rely on real-time GNSS
precise position estimates.

Based on the resolved ambiguities, the precise baseline vec-
tors were used to derive the ships’ position and attitude. The ac-
curacy of the baseline solution was tested through a static test.
In the Hong Kong test, the solution was compared to the output
of'a commercial software (TGO, Trimble Geomatic Office, Sun-
nyvale, CA) for benchmarking.

Finally, the timing performance of the ambiguity resolution
methods is reported, to stress the efficiency of the algorithms
presented.

A. Static Data Set

The static test was performed at the Curtin University of
Technology (CUT, Perth, W.A., Australia) campus. Several
baselines were formed by lining up antennas from a known ref-
erence point. The antennas/receivers (Sokkia GSR 2700 ISX)
were placed at regular intervals from 0.6 to 100 m (Fig. 4). Six
receivers were used for the test, and four different measurement
sessions were planned. Five different baselines were tested
at each session, allowing two overlaps between consecutive
sessions. The ground truth for the experiment was surveyed
with a Sokkia SetlX total station (2-mm distance measurement
accuracy). The number of satellites tracked varied between six
and nine (Fig. 5), with position dilution of precision (PDOP)
values ranging between 2.2 and 3 most of the time, with a peak
of 16 during the first 800 epochs of the first session, due to
a bad distribution of the six tracked satellites in the sky. The



354 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 37, NO. 3, JULY 2012

Piltar
0.6
Feoor
02 N 2m
", T 5m
%"\%;',e\ T
\\ p\\.\f;?)b\ T10m
2, *® 20m
}os’?o\ N F
VAN
’oo’%\% \ T30m
& N gom
\\\\@.\ . T
NS 50m
a%/f . \ r
B\ N g 0m
1
% N N p70m
M, 7 .
0,;;;&0\ \ r m
%%, 90
e, D 0
N ”
e T
(a) (b)
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Fig. 5. Static test: number of tracked satellites at each baseline/session. (a) Session 0. (b) Session 1. (c) Session 2. (d) Session 3.

data sets collected were processed with the LAMBDA and data were processed epoch by epoch, thus not using any fil-
C-LAMBDA methods. Results obtained applying the linearized  tering or batch computation. Also, only GPS L1 data were used.
version (LC-LAMBDA, discussed in Section II-C) are given, Table I compares the results obtained with the three methods.
investigating how the baseline separation between the antennas  The first session was characterized by a lower average number
affects its performance. of satellites (see Fig. 5), which explains the lower success rate

1) Success Rate Performance: First, we looked into the un-  of the LAMBDA method. The constrained method was capable
aided, single-frequency, single-epoch success rate, i.e., the ratio  of fixing the correct ambiguities for 99% of the time for most
of correctly fixed integer vectors in the tested time span. The of the data sets. The C-LAMBDA method showed a larger ro-
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TABLE I
STATIC DATA SET: UNAIDED SINGLE-FREQUENCY, SINGLE-EPOCH SUCCESS RATES FOR THE LAMBDA, C-LAMBDA,
AND LC-LAMBDA METHODS, AS A FUNCTION OF THE SESSION/BASELINE LENGTH

Unaided single-frequency, single-epoch success rate [%]

Epochs  Baseline length [m] | \\BpA  C-LAMBDA LC-LAMBDA

0.598 765 9%.6 132

1.000 76.8 99.7 10.7

Session 0 2079 1.999 74.2 97.7 12.9
4.999 755 99.1 275

10.001 778 99.0 348

4999 90.6 99.9 287

10.001 90.5 99.6 414

Session 1 1924 20.004 96.6 99.8 58.2
30.008 98.1 99.9 714

40.010 98.6 99.9 82.6

30.008 862 995 9.6

40.010 93.6 99.9 81.1

Session 2 2050 50.010 78.0 99.7 84.0
60.017 89.0 99.9 872

70.018 90.1 9.1 85.5

60.017 647 98.9 827

70.018 85.6 99.8 915

Session 3 2060 80.020 87.4 99.9 94.2
90.024 75.9 99.1 90.6

100.032 61.6 99.8 84.6

“#Elevation, standard deviation
HHeading, standard deviation

Standard deviation [rad]
)
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IS

5 20 40 60 80 100
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Fig. 6. Standard deviations of the heading and elevation angles as a function
of the baseline length, static test.

bustness against the satellite configuration, due to the increased
strength of the underlying model.

As expected, the linearized method provided acceptable re-
sults only for baselines longer than a certain threshold. This
threshold, according to the static test, is located between 40
and 60 m. It is noteworthy that for longer baselines the lin-
earized method provided higher success rates than the standard
approach. This was as expected, since the nonlinearity of the
stronger constrained model largely reduces on longer baselines.

2) Accuracy Performance: The set of (correctly) fixed am-
biguities gives very precise baseline coordinates estimation, ac-
cording to (8). However, the precision of the attitude angles also
depends on the baseline separation between the antennas. Fig. 6
shows the standard deviations of the heading and elevation an-
gles for the static data sets as a function of the baseline length.
As expected, both angles were estimated with higher accuracy
at longer baseline lengths. For the shortest baseline examined,

0.6 m, the standard deviation of the estimated attitude angles did
not exceed one degree. The elevation angle was estimated with
higher uncertainty due to the properties of the GNSS working
principle: the satellites cover, with respect to the receiver, only
a hemisphere, causing higher dilution of error in the vertical
plane.

3) Timing Performance: Deriving a solution in a timely
manner is fundamental for real-time applications. The time to
resolve the vector of ambiguities was extrapolated from the
implemented software. Although the code is not optimized, the
timing performance shows the quickness of the new method:
on average, each epoch of data was resolved! within 2.44 ms
with the LAMBDA method, 3.57 ms with the C-LAMBDA
method, and 2.55 ms with the LC-LAMBDA method. The
constrained method, which was expected to be slower due to
the higher complexity of the search algorithm, does not show
a significant displacement from the timing performance of the
linear methods. This is achieved thanks to the sharp bounds
and efficient search strategies, described in Section II-B.

B. Testing on a Small Boat Sailing a Canal

A precise absolute positioning system is important for small
vessels where the exact track, speed, and attitude need to be
recorded, e.g., for maneuvering trials, speed trials, boat wake
trials, or automatic navigation. The GNSS RTK solution pro-
vides centimeter-level accuracy in the estimation of the boat
position. This section presents the results obtained by applying
the methods described earlier to an experiment performed with
a small boat sailing the narrow Schie Canal.

The boat in Fig. 7(a) was equipped with three antenna/re-
ceiver couples: a choke-ring antenna connected to an Ashtech

IData processed in Matlab, v.7.5, running on a Pentium Core2, 2.15-GHz,
2-Gb RAM.
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Fig. 7. The Schie experiment: three antennas/receivers were carried aboard a small boat sailing the Schie Canal, Delft, The Netherlands. (a) The boat used for the
Schie experiment, equipped with three antenna/receiver couples. (b) The number of tracked satellites and PDOP values.
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aboard. The speed of the boat is accurately derived by differencing the position estimates. (a) Image of the experiment setup, showing the DUT campus, the
reference station, and the path of the boat. (b) Part of the boat’s sailing path. (c) The boat absolute velocity profile.
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TABLE 11
SCHIE DATA SET: UNAIDED SINGLE-FREQUENCY, SINGLE-EPOCH SUCCESS RATES FOR THE LAMBDA AND C-LAMBDA METHODS

Baselines LAMBDA  C-LAMBDA
1-2 82.0 99.6
Single-epoch , single frequency, single baseline success rate [%]
1-3 61.7 97.7

receiver, an antenna connected to a Leica SR530 receiver, and a
third antenna connected to a Novatel OEM3 receiver. The base-
line lengths between the antennas were 2 m (Ashtech-Leica) and
1.5 m (Ashtech-Novatel). The boat was sailed for about 2.5 h,
collecting 9000 epochs of GPS-L1/L2 code and phase observa-
tions. The number of tracked GPS satellites varied between 7
and 8, except for the first 1000 epochs, where data from only
six satellites were stored. The PDOP values varied between 2.1
and 4.1 [Fig. 7(b)].

1) Success Rate Performance: Table I summarizes the un-
aided single-frequency, single-epoch success rate obtained by
processing the data sets with the LAMBDA and C-LAMBDA
methods (the linearized method should not be applied, since the
baseline lengths are too short). The improvement obtained by
exploiting the additional nonlinear geometrical constraint is ev-
ident: the number of correctly fixed epochs increased from 82%
to 99.6% for the first baseline and from 61.7% to 97.7% for the
second baseline. It is evident that dual-frequency equipment is
not necessary when the model can be made sufficiently strong

by rigorously including additional constraints that drive the am-
biguity resolution process.

Dual-frequency data are useful, however, to derive the RTK
solution, where no constraints can be exploited and the single-
frequency model lacks sufficient strength. For this experiment, a
reference station was available within 6 km from the boat sailing
path, and a precise relative position could be computed at each
epoch applying the dual-frequency (unconstrained) model (10).
All the ambiguities were correctly fixed, and Fig. 8(a) and (b)
shows the path of the boat on a map. The RTK solution also
provides an estimate of the boat speed, whose time series is
plotted in Fig. 8(c).

2) Attitude Estimation: Fig.9 illustrates the three attitude an-
gles (heading, pitch, and roll) derived with the two fixed base-
line vectors aboard. Since the correct attitude estimation is ob-
tained only when both baselines are correctly fixed, the ratio
of epochs where the single-epoch attitude solution was avail-
able equals 97.4%. It is remarkable that using the C-LAMBDA
method to process Lj-only observations provided such high
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Fig. 10. Hong Kong test: number of tracked satellites and PDOP values for each ship. (a) Katrine Maersk. (b) Maersk Dortmund. (c) Sally Maersk.

TABLE III

HONG KONG DATA SETS: GENERAL INFORMATION ABOUT THE SHIPS INVOLVED IN THE EXPERIMENT

Ship Length [m] Transit direction Displacement [tonnes] Test date and time (GMT)
12/02/2005
Katrine Maersk 318 Inbound 107200
00:48 - 02:18
05/02/2005
Maersk Dortmund 294 Inbound 55000
00:39 - 01:46
08/02/2005
Sally Maersk 347 Outbound 111300
01:41 - 02:27

success rate on a single-epoch base, without any external aid
or any filtering of the data. This allows on-the-fly attitude es-
timations and real-time control with high reliability, since the
algorithm can quickly recover from any fault.

3) Timing Results: The fast convergence of the constrained
algorithm was confirmed also in this kinematic experiment:
LAMBDA took on average 2.2 ms to extract the integer
minimizer in both baselines, while the C-LAMBDA method
employed on average 5.0 ms (first baseline) and 5.5 ms (second
baseline), a small increment due to the higher complexity of
the algorithm.

C. Testing on Large Container Ships Approaching
the Hong Kong Harbor

In 2005, the Centre for Marine Science and Technology,
CUT, performed a series of tests for the Hong Kong Marine
Department. A detailed study of the sinkage and dynamic

draft of container ships entering and leaving Kwai Chung, the
busiest container port in the world, was performed. Full-scale
trials were carried out on some of the largest container ships,
ranging in overall length from 294 to 352 m, to accurately
measure sinkage, trim, and roll [4], [5]. Three receivers/an-
tennas (Trimble 5700 receivers connected to Trimble Zephyr
antennas) were installed aboard the ships, one at the bow, two
on the bridge (one at port and one at starboard side). A ground
station was setup at the berth (of the same manufacturer and
type of the antennas aboard). Table III reports some information
about three example ships involved in the experiment, while
Fig. 10 shows the number of (common) tracked satellites from
the antennas and PDOP values.

For each ship, the precise absolute position as well as its atti-
tude (heading, roll, and pitch) was computed. In the following,
various aspects of the proposed method are analyzed, and a com-
parison with the results obtainable with a commercial software
is provided.
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TABLE IV
HONG KONG DATA SETS: UNAIDED SINGLE-FREQUENCY, SINGLE-EPOCH SUCCESS RATES FOR THE LAMBDA, C-LAMBDA, AND LC-LAMBDA METHODS

Unaided single-epoch, single frequency, single baseline success rate [%]

Ship Baseline length [m]
LAMBDA C-LAMBDA LC-LAMBDA
Port to Bow 21391 16.4 76.4 74.7
Katrine Maersk Starboard to Bow  213.86 16.8 75.7 72.7
Port to Starboard ~ 42.515 38.5 93.4 67.8
Port to Bow 223.51 14.1 61.5 60.6
Maersk Dortmund  Starboard to Bow  223.53 17.6 75.6 65.1
Port to Starboard ~ 30.270 12.1 69.8 27.9
Port to Bow 242.23 19.9 80.5 79.4
Sally Maersk Starboard to Bow  242.22 16.9 71.6 66.5
Port to Starboard ~ 36.090 32.6 89.5 58.6

Fig. 11. Picture of the antennas aboard one of the Maersk ships. (a) The antenna installed at the bow. (b) The antenna installed above the bridge, starboard side.

(¢) The antenna installed above the bridge, port side.

1) Success Rate Performance: The feasibility of real-time
monitoring of ship sinkage and attitude is dependent on the
single-epoch performance of the ambiguity resolution method,
which has to guarantee a quick correct solution. Table IV re-
ports the single-frequency, single-epoch success rates for each
of the baselines between antennas carried aboard. All the base-
lines formed by the three antennas on the ship were processed
with the LAMBDA, C-LAMBDA, and LC-LAMBDA methods.
The improvement in success rate from the LAMBDA method to
the C-LAMBDA or LC-LAMBDA methods was rather large for
all the cases, showing that the inclusion of the baseline length
as a constraint in the ambiguity resolution process leads to a
large improvement in the capacity of resolving the correct set
of carrier-phase ambiguities. The single-epoch results for all
the methods showed reduced performance with respect to the
previous Schie test, the reason being the quite different sur-
rounding environment. The pseudorange and carrier-phase mea-
surements were more affected from multipath, being surrounded
by the metal structure of the vessel and the containers (Fig. 11).
Noteworthy, the constrained method was capable of largely im-
proving the success rate also in such environment.

The linearized method, due to the long baselines of the
test, always provided higher success rate than the standard
LAMBDA method, and approaching the performance of the
C-LAMBDA method for the longest baselines. This makes

the LC-LAMBDA method rather interesting for this class of
vessels, where baselines usually are tens or hundreds of meters
long.

Although our method of constraining has significantly im-
proved the ambiguity success rate performance, for reliable am-
biguity resolution of course higher success rates are needed
than shown in Table IV. Note though that these are unaided,
single-epoch success rate values. Hence, in case of multiepoch
processing, our success rates will achieve acceptable levels in
only a few epochs.

2) Attitude Estimation and Relative Positioning: The cor-
rect set of integer ambiguities provides precise baseline coor-
dinates vector. The ship full attitude is then extracted from the
vector observations. Fig. 12 shows the three attitude angles for
each ship: heading (with respect to the north direction), roll, and
pitch. The angles were derived from single-epoch baseline ob-
servations resolved with the C-LAMBDA method, using the ap-
proach described in Section II-D1.

To compare the quality of the obtained estimation, a com-
parison with a commercial software (Trimble Geomatic Office,
TGO) is provided. Fig. 13 shows the differences between the
attitude angles obtained with the C-LAMBDA method and
derived making use of the baseline solutions resolved by the
TGO software. The performance of the C-LAMBDA method
matches the one of the TGO software, with small deviations
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Fig. 12. The three attitude angles computed with the C-LAMBDA method for each ship examined. Only a part of the roll and pitch time series has been reported,
to better visualize the oscillating behavior. (a) Heading angle, Katrine Maersk. (b) Roll angle, Katrine Maersk. (c) Pitch angle, Katrine Maersk. (d) Heading angle,
Maersk Dortmund. (e) Roll angle, Maersk Dortmund. (f) Pitch angle, Maersk Dortmund. (g) Heading angle, Sally Maersk. (h) Roll angle, Sally Maersk. (i) Pitch
angle, Sally Maersk.
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Fig. 13. Comparison between the attitude results obtained with the C-LAMBDA method and with the TGO software. The differences are contained within 0.15°
in all the cases. (a) Heading angle, differences between C-LAMBDA and TGO. (b) Roll angle, differences between C-LAMBDA and TGO. (c) Pitch angle,
differences between C-LAMBDA and TGO.

between the different estimations: the differences are mostly without applying any filtering or dynamic modeling match
contained within 0.05°, and never exceed 0.15°. This suggests those obtained with a commercial software that processes
that the proposed algorithm can perfectly compensate a down-  dual-frequency observations on a multiepoch base.

grade of the equipment carried aboard: the results obtained However, a dual-frequency receiver is necessary aboard to
processing single-epoch, single-frequency observations and obtain a reliable and precise (centimeter-level) RTK solution
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Fig. 14. Hong Kong test: the trajectory of the three ships approaching (Katrine and Dortmund) or leaving (Sally) the quay, Hong Kong harbor. (a) The trajectory
of the three ships during the experiment. (b) The three ships entering or leaving the anchorage area. The ground station is visualized as well.

TABLE V
HONG KONG DATA SETS: AVERAGE SINGLE-EPOCH COMPUTATION TIME FOR THE LAMBDA, C-LAMBDA, AND LC-LAMBDA METHODS

Average single-epoch computational time [ms]

Ship Baseline
LAMBDA C-LAMBDA  LC-LAMBDA
Port to Bow 2.5 6.1 24
Katrine Maersk Starboard to Bow 2.4 6.0 24
Port to Starboard 2.5 4.5 2.5
Port to Bow 23 6.9 22
Maersk Dortmund ~ Starboard to Bow 2.4 6.0 2.4
Port to Starboard 2.3 6.3 22
Port to Bow 2.6 6.2 2.5
Sally Maersk Starboard to Bow 2.6 6.5 2.4
Port to Starboard 2.5 49 2.5

for the ships. Fig. 14 shows the trajectories of the three ships
entering (Katrine and Dortmund) or leaving (Sally) the quay,
at the Hong Kong harbor. This precise RTK solution can be
coupled to the attitude estimations to provide real-time UKC
monitoring if precise depth data are available.

3) Timing Performance: Table V reports the time elapsed
during the ambiguity search for the various methods tested. The
C-LAMBDA method, due to its inherent complexity, required
only slightly longer searches. The linearized method marked
timing results even faster than the one of the original LAMBDA
method, thanks to the simplified cost function associated to the
stronger—for long baselines—underlying model.

IV. CONCLUSION

This contribution reports field-test results of a newly devel-
oped method for GNSS carrier-phase ambiguity resolution.
The process of resolving the ambiguities inherent to the GNSS
carrier-phase observables is the key toward very precise (up to
millimeter-level) positioning products. The LAMBDA method

is an optimal algorithm to resolve the integer ambiguities, and
widely used for its computational efficiency. For those appli-
cations where the baselines between the antennas are precisely
known, it is desirable to exploit the a priori information to drive
the ambiguity resolution process, rather than using it only for val-
idation purposes or to obtain a more accurate float solution. The
C-LAMBDA method, an extension of the LAMBDA method for
baseline-constrained models, has been introduced with the objec-
tive of rigorously resolving the unknown ambiguities for frames
of antennas firmly mounted aboard moving platforms. The a
priori information is embedded into the ambiguity resolution
process, via a modification of the cost function to be minimized
by the search algorithm. The strengthening of the observation
model reflects into an improved capacity of fixing the correct set
ofinteger ambiguities, if compared to the classical unconstrained
algorithms. This allows the user to match the performance usually
obtainable only with dual-frequency equipment by using only
single-frequency receivers/antennas and still providing areliable
baseline solution on an epoch-by-epoch base.
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The application subject of this paper is the estimation of ship
attitude and UKC. To estimate the distance between a ship’s hull
and the seabed, the absolute position of one point on the ship has
to be first precisely determined, to locate the ship on a nautical
chart datum. Then, the attitude of the ship is estimated to detect
the deepest point of the hull and avoid collisions with any of the
seabed features.

The method presented in this work makes use of only two
dual-frequency receivers (one onboard, one onshore) to pre-
cisely estimate the ship’s position. Then, a set of two or more
single-frequency receivers/antennas onboard is required to es-
timate the hull’s attitude. The use of lower grade equipment is
compensated by the higher strength of the functional model if
the set of geometrical constraints posed on the baselines is em-
bedded into the ambiguity resolution algorithm.

Various test results showed that the C-LAMBDA method
matches the performance obtainable with classical RTK multi-
frequency configurations, allowing a fast, reliable, and precise
estimation of the ship’s attitude with reduced costs.

A linearized version of the method is also tested: the
LC-LAMBDA method is demonstrated to be a valid procedure
to perform ambiguity resolution for long baselines. It avoids the
complex search associated to the constrained method, although
exploiting the stronger functional model by means of extracting
the constrained float solution and a modified cost function.
Both experimental success rates and timing performance sug-
gest that the method should be employed to all those RTK
applications making use of known long (tens or hundreds of
meters) baselines; such is the case with attitude determination
of large vessels.

Numerous maritime applications could benefit from the
methods described in this work, ranging from the automatic
port navigation to precise docking assistance.

APPENDIX
A SOLUTION OF THE WHABA’S PROBLEM

The argument of the minimization can be rewritten as

k

S6' = R-by|| = tx(BTB) +tr (Bf B,) —2-tr (RTBBY )
= (24)
where B and B, are the 3 x k& matrix whose columns are the
baselines coordinates in the two frames enu and uwwvw, respec-
tively; tr indicates the trace operator (sum of elements on the
main diagonal). Minimizing (23) corresponds to maximizing the
last term on the right-hand side of (24). If the product BB} is
nonsingular, it can be expressed via the SVD as the product of
two orthogonal matrices P, and P» and a diagonal matrix D.
Therefore, the form to maximize is

tr (RTPDPY) = tr (PYRTPID) = wad;  (25)
k=1

where z;; are the diagonal elements of the matrix X =
PIRTP;. Being X a product of orthonormal matrices, all
its entries assume values in the interval [—1;1], and the
maximizer of (25) is obtained imposing X = I. Since
the determinant of 12 must be +1, the determinant of X

(det X = det R - det (P4 Pr)) must be negative if det(Ps Py)
is negative: therefore the minimizer of (24) is

dCt(PQTPﬂ 0

with X = 0 Io s

R=PXPT, (26)
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