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ABSTRACT 
The detection and classification of marine mammal vocalisations is an important component in noise mitigation strat-
egies and in the tracking of animals for research purposes.  These complex vocalisations span a broad range of fre-
quencies with differences between and within species, and with temporal and geographical variations adding further 
complexity. Passive Acoustic Monitoring (PAM) systems can be deployed for long periods and can collect large vol-
umes of data, becoming impractical for human operators to manually process due to the significant effort required. 
Many signal processing algorithms to automate this process have been produced with mixed results. Some are fo-
cused on the identification of single species while others handle a variety. No single algorithm is ideal for detecting 
and classifying all species concurrently, so any automated system requires a suite of these algorithms. A number of 
these algorithms are summarised here as part of an initial step in the construction of a PAM system incorporating re-
al-time detection and classification. 

INTRODUCTION 

Passive Acoustic Monitoring (PAM) of marine mammals 
provides a method of observation which can supplement or 
replace the visual method of monitoring which has tradition-
ally been used. Acoustics can provide a means of monitoring 
animals at great distances, compared to visual methods, due 
to the fact that sound can propagate much further in the ocean 
than light can (Cato, Noad & McCauley 2005). Vocalisation 
is common in many marine mammals, and is used for social, 
navigational (Verfuß, Miller & Schnitzler 2005) and predato-
ry purposes. Visual observations can also be hindered by 
environmental conditions, such as inaccessible geography, 
remoteness, time of day or by the effects of weather, and can 
be limited in their use due to the short times animals may 
spend at the surface. While PAM is not immune to the effects 
of weather, it can still provide useful information where visu-
al observations are unsuitable. 

The vocalisations of some species can travel large distances 
underwater, able to be detected up to tens of kilometres away 
for whales (Medwin & Blue 2005) and their unique charac-
teristics provide a means to differentiate between species and 
even individuals. Current PAM systems can be described as 
those which simply record all sound for post-processing, such 
as noise loggers, and those which perform some real-time 
processing performed either on-board or by offloading to a 
separate computing system, such as in cabled hydrophone 
arrays or sonar buoys. 

Basic loggers are usually filtered for frequencies of interest 
and recorded on a duty-cycle. Eventually the data must be 
retrieved and transported to the lab for post-processing by a 
combination of human operators and computer algorithms. 
Other systems which transmit data back to a base can do so 
potentially in real time. These data can be processed immedi-
ately but the computational effort increases with every node 
in an array. When not processed immediately, large scale 
data storage poses additional problems such as costs and 
facilities. 

PAM systems combining detection and/or classification at 
the source of the recording can alleviate some of these issues. 
This has obvious benefits since it allows the deployment of 
larger arrays without the increasing requirements of pro-
cessing power and data storage. This can greatly reduce the 
effort required by analysts, reduce the time spent on data 
retrieval, and can increase the time that the sensors are de-
ployed to collect data. 

Some existing PAM systems already include detection.  An 
example is the T-POD (Timed POrpoise Detector), which 
was designed to detect porpoise click trains and could be 
used for other species (Philpott et al. 2007). Despite the abil-
ity to detect some other species this was still limited in use in 
more diverse cetacean communities (Thompson et al. 2010). 
The C-POD (Cetacean POrpoise Detector) superseded the T-
POD and was designed to detect clicks from a larger variety 
of species, however it is unable to detect clicks from the 
sperm whale due to limitations in the frequency range (C-
POD Species Detection 2013). These systems are limited to 
only detecting click trains with limited classification capabil-
ity. Another system, the PAMBuoy, was recently released 
and includes a detection and classification system utilising 
the PAMGuard software suite (Marine Instrumentation Ltd. 
2012). In a recent trial monitoring beluga whales in Alaska 
the PAMBuoy system was found to not perform as well as a 
human observer although it did reliably detect all whales 
approaching or entering the river where the test was per-
formed (Gillespie 2013). 

In developing a PAM system which includes detection and 
classification for marine mammals, it is possible to draw on a 
large body of research investigating and describing the vari-
ous characteristics of vocalisations along with algorithms that 
have been created to detect them. This research has shown 
that there is extreme variation between species and that no 
one algorithm is suited to detect all species concurrently. Any 
system with the goal of detecting multiple species must uti-
lise a range of algorithms. A large selection of these algo-
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rithms were collected and catalogued as part of the prelimi-
nary research for the development of such a system.  

Comprehensive discussions regarding most of the techniques 
in these algorithms can be found in Au & Hastings (2008) 
and Zimmer (2011). The use of those techniques in the pa-
pers cited here, for example spectrogram correlation, types of 
feature extraction and neural networks shows that these are 
accepted and tested methods, but there are also some novel 
techniques discussed here which are areas of new and active 
research. 

Discussion of these algorithms is preceded by a short over-
view of marine mammal sounds and a discussion of signal 
flow in PAM systems. The review is roughly structured into 
four broad categories. The first is feature extraction which 
describes a major component of all classification algorithms. 
Feature extraction seeks to define relevant features of a signal 
which can be extracted for detection and classification. The 
second discusses energy based approaches, which are argua-
bly just another feature extraction method but in some cases 
are simpler and all of them focus largely on energy content. 
The third is a category which processes information from 
extracted features using statistical analysis methods such as 
Hidden Markov Models (HMMs) and Gaussian Mixture 
Models (GMMs) for classification. Finally, the fourth catego-
ry discusses some more novel ideas such as the use of infor-
mation entropy and Eigen-clustering and using neural net-
works for classification. Where the algorithm has been ap-
plied to a particular species it is mentioned and many of the 
algorithms can be adapted to different species. 

PAM SIGNAL FLOW 

Referring to Figure 1, signal flow in a PAM system can be 
described as follows. A hydrophone converts the acoustic 
energy into electrical energy which enters the system as an 
analogue signal. Systems which don’t perform any detection 
or classification and which do not digitise the signal will 
transmit the analogue signal and processing will be done 
elsewhere. 

Some approaches, discussed in the overview of detection and 
classification methods section, perform detection in the ana-
logue domain. For example some methods use band-pass 
filters to monitor amplitude levels for threshold exceedences. 
These detections will be digitised and either transmitted back 
to base or stored for later retrieval. 

Many systems operate in the digital domain. Some will digi-
tally transmit back to base for later processing or store the 
raw digitised and unprocessed data. Those that perform de-
tection and classification at the source will likely monitor 
spectral energy in specific frequency bands for detection in 
the same way as the analogue detection mentioned, i.e. 
watching for amplitude threshold exceedences in certain 
bands to indicate a signal of interest might be present. 

Referring to Figure 2 there are broadly three stages a signal 
will go through when being examined for the presence of a 
vocalisation. The first is the initial detection, which as dis-
cussed will rely on energy content, monitored through filter 
banks or a digital method like Fast Fourier Transforms 
(FFTs). If the system seeks to classify the signal and associ-
ate it with a particular species then it will extract some fea-
tures to perform an analysis. The feature extraction and clas-
sification stage is what differentiates the techniques. For 
some algorithms, the features extracted are simply the 
amount of energy in certain frequency bands (Gillespie & 

Chappell 2002; Ward et al. 2000) where others collect more 
spectral and temporal features, such as a slope in the frequen-
cy over the length of a call (Gavrilov et al. 2011; Harland & 
Armstrong 2004), the duration of the call and the inter-click-
interval for echolocation clicks (Ma et al. 2010). 

Figure 1. Overview of signal flow in a PAM system 

 

 

Figure 2. The stages of detection and classification. 

There are also a variety of classification methods in the algo-
rithms discussed here. For example, a number use statistical 
methods to analyse the extracted features (Brown & 
Smaragdis 2009; Rickwood & Taylor 2008; Roch et al. 
2007), others use neural networks (Deecke & Janik 2006; 
Dugan et al. 2010a, 2010b) and some use spectrogram corre-
lation (Mellinger & Clark 1997, 2000; Mellinger, Stafford & 
Fox 2004). 

OVERVIEW OF MARINE MAMMAL SOUNDS 

The characteristics of marine mammal vocalisations have 
been well studied and documented over the past 50 years  
(Au & Hastings 2008; Backus & Schevill 1966; Gavrilov et 
al. 2011; Payne & McVay 1971; Rankin & Barlow 2005; 
Schevill 1964; Thompson & Friedl 1982; Watkins & Schevill 
1977; Weilgart & Whitehead 1997; Weilgart & Whitehead 
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1988). The vocalisations can be broken down broadly into 
two categories, social sounds and echolocation sounds (Au & 
Hastings 2008). The sounds have many names, for example, 
moans, grunts, buzzes, clicks, pulses etc. but it is reasonable 
to say that the sounds are mostly “species-specific” and for 
the purposes of classification of species should be considered 
separately (Zimmer 2011), although this can be a risky as-
sumption as some species calls sound very similar to other 
species, such as the humpback call (Baumgartner & 
Mussoline 2011). Acoustically, the sounds can be categorised 
as periodic or a-periodic and are a mixture of frequency and 
amplitude modulated signals (Zimmer 2011). 

The sounds made by geographically isolated groups of indi-
viduals within the same species are known to vary (Weilgart 
& Whitehead 1997), though there is evidence of horizontal 
cultural transmission of songs over a vast geographic region 
(Garland et al. 2011). There is also evidence of some whales 
experiencing a subtle lowering of frequency over a number of 
years (Gavrilov et al. 2011). The humpback whale song is 
thought to only be produced by males travelling mostly in 
isolation, but whales within a population sing the same basic 
song, although it may undergo slight changes throughout the 
breeding season (Au & Hastings 2008). 

There are many resources available to researchers studying 
and seeking to detect and classify the vocalisations, including 
annotated datasets (Mellinger 2010; Mellinger & Clark 2006) 
and a compiled repertoire specifically for automatic detection 
and classification (Erbe 2004). A frequency band of 7 Hz to 
180 kHz is thought to contain all frequencies within the range 
of marine mammal vocalisations and hearing (Barker & 
Lepper 2012). 

OVERVIEW OF DETECTION AND 
CLASSIFICATION METHODS 

Detection and Feature Extraction 

The majority of detection and classification algorithms use a 
method of feature or attribute extraction. These algorithms do 
not all extract the same features but they seek to generate a 
profile of the signal of interest and compare it with some 
known parameters. Most detection components focus on 
watching a range of frequency bands where the signals of 
interest reside and record a detection when a number of 
thresholds are exceeded. 

Earlier classification algorithms simply used this detection 
technique, looking for increased energy levels in certain fre-
quency bands tailored to the species of interest. Ward et al. 
(2000) detected sperm whales using an energy detector on 6 
narrowband frequencies below 12 kHz. Wavelets were also 
used with a moving average in a way that was equivalent to a 
series of filter banks. Similarly Gillespie & Chappell (2002) 
applied band-pass filter banks to split signals into three 
bands, using the relative amplitude of the signals in these 
bands and the shape of the pulse for the detection of harbour 
porpoises. The simplicity of these approaches makes them 
susceptible to false positives and less robust in noisy envi-
ronments, but they are well suited to narrowband signals like 
porpoise clicks and some clicks from other species. 

Harland & Armstrong (2004) split incoming acoustic signals 
into five processing channels for five groups of calls from 
odontocetes (toothed whales) and mysticetes (baleen whales). 
For pulses, an FFT was applied and a static amplitude thresh-
old was used for detection, which was confirmed with a test 
of the spectral slope. For tonal signals however, a combina-

tion of minimum and maximum frequency, start and stop 
frequency, bandwidth, duration and other parameters was 
collected after generating a spectrogram and searching for 
connected components. Johansson & White (2004) used a 
different approach, applying an adaptive notch filter with a 
dynamic detection threshold for tonal signals from right 
whales which worked well with simultaneous sounds in low 
signal-to-noise ratios. 

The generalised perceptual linear prediction (gPLP) model 
was introduced to animal sound analysis by Clemins & 
Johnson (2006); Clemins et al. (2006), adapting a speech 
processing model. It generated features in the discrete 
cepstral domain and incorporated experimentally acquired 
perceptual information to tailor the feature extraction to the 
species of interest. The use of Mel-Frequency Cepstral Coef-
ficients (MFCCs) and Greenwood Function Cepstral Coeffi-
cients (GFCCs) were also discussed, which are both tradi-
tionally used to extract features from human speech. It was 
not applied to marine mammals in this study but the research 
was used by Roch et al. (2007) who used it to classify odon-
tocetes. 

Oswald, Barlow & Norris (2003); Oswald et al. (2007) ex-
tracted features and applied discriminant function analysis, 
and non-parametric classification using regression tree analy-
sis to classify whistles (from spinner, striped, pantropical 
spotted, long-beaked common, short-beaked common, rough-
toothed and bottle nosed dolphins, as well as short-finned 
pilot and killer whales) with mixed accuracy. In Oswald, 
Barlow & Norris (2003), which only used discriminant func-
tion analysis, correct classification within species was signif-
icantly greater than expected by chance alone and ranged 
from 29.9% for striped dolphins to 91.2% for false killer 
whales. In Oswald et al. (2007) this increased to 34.2% for 
striped dolphins and decreased to 70% for false killer whales 
when regression tree analysis was added. This method of 
detection and classification was incorporated into the 
PAMGUARD software suite in 2011 (Oswald et al. 2011).  

Linear discriminant analysis has been applied to the super-
vised classification of beaked whale clicks by Parnum et al. 
(2011), who used supervised classification to achieve a false 
alarm rate of 5% and a misdetection rate of 2%. Baumgartner 
& Mussoline (2011) used attribute extraction which focused 
on pitch-tracking and was combined with a quadratic discri-
minant function analysis to detect and classify sei whale and 
North Atlantic right whale calls. Their system was judged to 
be similar to that of a human analyst. 

Gavrilov et al. (2011) used a signal recognition algorithm that 
searched for transient signals in sea noise which had known 
time-frequency features, similar to a documented call of the 
pygmy blue whale. The features that were used were the 
signal duration, the frequency band and the slope of frequen-
cy change with time. This same algorithm was again used by 
Gavrilov et al. (2012) to detect common song themes and 
was reported to have a misdetection and false detection rate 
of less than 5%. 

Extraction of a mixture of temporal and spectral features was 
used by Zaugg et al. (2010) in the detection of sperm whale 
clicks, as part of a larger system including impulse detection 
to detect impulsive shipping noise. The system used band 
pass filters at 1-5 kHz and 5-20 kHz, established a dynamic 
threshold and detected impulses. The extracted features were 
fed into a feed forward neural network for classification. 
Their model was able to reliably automatically detect and 
classify sperm whale clicks and differentiate them from im-
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pulses due to ship noise. This method was combined with a 
short tonal detector and more band pass filters between 0 and 
500 Hz and a high pass filter of 20 kHz in André et al. 
(2011). This also used spectral and temporal features to de-
tect whistle-like sounds from dolphins and tonal calls from 
baleen whale species, and is likely able to be adapted to a 
variety of species. It was found to be a highly efficient ultra-
sonic click detector which reduced the computational load on 
the classifier stage. 

Binder & Hines (2012) applied aural classification tech-
niques, utilising a simple auditory model which used a 100-
channel filter bank with gains scaled to represent the propa-
gation of sound through the outer and middle ear. From the 
output of the filter bank, 46 time-frequency features and 12 
purely spectral features were extracted. Discriminant analysis 
and principal component analysis were applied, with the goal 
of dimensionality reduction. The conclusion was that the 
aural classifier was a useful tool for classifying cetacean 
vocalisations, with discriminant analysis the preferred tool. It 
was tested successfully with five cetacean species (bowhead, 
humpback, North Atlantic right, minke and sperm whales) 
and likely could be adapted to a larger range. 

Ou, Au & Oswald (2012) produced an automatic detector of 
minke whale ‘boing’ sounds which searches for frequency 
features but avoids calculating the continuous spectrogram to 
reduce computational time. These features are the peak fre-
quency range, the separation between centre and side fre-
quency bands and the duration of the sound. The technique 
worked well in low signal to noise ratio environments and 
can be adapted to any species of interest. 

Zaugg et al. (2012) describe an algorithm which uses a ‘peak-
iness’ metric; a way to quantify the prominence of spectral 
peaks. The peakiness metric can be a measure of average 
energy via the median, the arithmetic mean or an entropy 
metric, which is a slightly altered measure of Shannon entro-
py (discussed in Information Entropy, Neural Networks, the 
Hilbert-Huang Transform and Eigen-Clustering). It was well 
suited to tonal sounds but not for echolocation clicks, and 
was judged particularly suitable for real-time operation. 

Mellinger et al. (2011) used a spectral peak tracking tech-
nique which used frequency contour analysis to detect Ris-
so’s dolphin whistles and minke whale boing sounds, despite 
the presence of interfering humpback whale songs. This 
technique can be adapted to a wide range of sounds and spe-
cies. It also potentially has applications in the identification 
of individuals due to the way it tracks frequency over time. 

Energy Based Algorithms 

Some detection and classification algorithms focus on energy 
content alone but are more advanced than the early feature 
detection algorithms by Ward et al. (2000) and Gillespie & 
Chappell (2002) which also focused on spectral energy con-
tent. These energy based algorithms can be susceptible to low 
signal to noise ratios though, as some dynamic thresholds are 
based on noise levels. A method of dealing with a noisy envi-
ronment is the matched filter, which is optimal when the 
signal is known. It was applied to bowhead whales and com-
pared with spectrogram correlation, a traditional energy 
based method of analysis by Mellinger & Clark (1997). It is 
best suited for environments where the noise has a flat spec-
trum or close to. 

Spectrogram correlation involves a kernel which is construct-
ed and cross-correlated with a spectrogram of a recording, 

and can work fairly well in low noise environments. This 
produces a recognition function representing whether the 
sound of interest was recorded at a certain time (Mellinger & 
Clark 1997, 2000; Mellinger, Stafford & Fox 2004). 
Mellinger & Clark (2000) found it to be quite successful for 
detecting bowhead whale calls with an error of only 0.9%. It 
was recommended for detecting a call type when relatively 
few instances of the call type are known. 

Another simple method of feature extraction is concerned 
only with frequency analysis and energy content. Morrissey 
et al. (2006) employed a click detector that purely used fre-
quency domain energy with a time varying threshold that is 
associated with the noise level to detect sperm whale clicks. 
A 512 point FFT was calculated and a binary frequency map 
was generated. When the number of bins in the map that 
registered a threshold exceedence passed another threshold of 
approximately 10 bins, a click was detected. It was success-
fully used as part of a tracking system in real time. 

Methods for detecting porpoise clicks using a band-limited 
energy sum technique were outlined by Gillespie & Chappell 
(2002) who demonstrated a sensor that performed real-time 
detection. Klinck & Mellinger (2011) improved on the band-
limited energy sum technique by developing the Energy Ra-
tio Mapping Algorithm (ERMA) which was tested by detect-
ing Blainville’s beaked whale clicks while rejecting the echo-
location clicks of Risso’s dolphins and pilot whales. The 
technique is suited for applications in low-power computing 
environments but suffered enough false positives that they 
recommended it to be the first step of a two-step detector.  

Kandia & Stylianou (2006) introduced the use of the Teager-
Kaiser energy operator to detect sperm whale creaks as well 
as regular clicks. This was compared with a rainbow click 
detector which uses two steps. The first stage passes a recti-
fied input through a first order low-pass filter, then filters the 
signals that register as clicks with a user-defined band pass 
filter. If a click has energy higher than some threshold it is 
registered as a click. It was also used by (Ma et al. 2010) for 
localisation of marine mammal clicks from an unspecified 
species. The Teager-Kaiser energy operator is fast and effi-
cient, only requiring 3 samples to calculate, making it near 
instantaneous and ideal for real-time systems. 

HMMs, GMMs and Other Statistical Methods 

Hidden Markov Models (HMMs) and Gaussian Mixture 
Models (GMMs) are statistical models which have also been 
applied to marine mammal acoustic detection and classifica-
tion algorithms. These models often use cepstral features or 
the MFCCs. MFCCs are a representation of the power spec-
trum over a short term and are often used in conjunction with 
HMMs and or GMMs. The Mel-frequency cepstrum differs 
from the regular cepstrum in the spacing of its frequency 
bands. 

The first use of GMMs for classification of marine mammal 
call types was Roch et al. (2007) who extracted cepstral fea-
ture vectors from call data to train GMMs of varying orders 
for a selection of species (short-beaked, long-beaked com-
mon, Pacific white-sided and bottlenose dolphins). The clas-
sifier predicted the species of groups with 67%-75% accura-
cy. This technique is well suited to detecting clicks and was 
used again in Roch et al. (2008) with positive results. 

Rickwood & Taylor (2008) demonstrated an energy based 
technique which involved the extraction of feature vectors 
using Hidden Markov Modelling (HMM) and used an infor-
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mation-theoretic approach with Minimum Message Length 
(MML) encoding. This allowed automatic detection and un-
supervised classification of humpback whales which can be 
adapted to other marine mammals. It also successfully clus-
tered similar song units together when there were significant 
variations in levels and interference, but was judged to re-
quire further work incorporating feedback from human op-
erators. 

Brown & Smaragdis (2009) applied both HMMs and GMMs 
to classify marine mammal call types and concluded that they 
were both highly successful for automatic classification of 
killer whale call types, but gave special mention regarding 
the performance of HMMs. This technique was analysed 
again, on killer whales, in Brown, Smaragdis & Nousek-
McGregor (2010) which came to similarly positive conclu-
sions.  

The performances of GMMs and other detection methods, 
including the ERMA were analysed by Yack et al. (2010) 
who compared a total of six beaked whale detection algo-
rithms. It was found that all had detection rates above 60%. 
The conclusion, however, was that the choice of algorithm is 
ultimately dependant on the application (i.e. real-time or 
post-processing) and they suggested a qualitative and quanti-
tative analysis should be conducted before choosing an algo-
rithm. It also showed that the GMM had the best correct de-
tection rate for beaked whales. Work on GMMs continues, 
with Roch et al. (2011), representing echolocation clicks of 
six species (bottlenose, short-beaked, long-beaked common, 
Pacific white-sided and Risso’s dolphins as well as Cuvier’s 
beaked whales) as cepstral feature vectors that are classified 
by GMMs. This technique was suggested as the second stage 
to complement the method of Klinck & Mellinger (2011). 

Pace, White & Adam (2012) used HMMs and MFCCs to 
classify humpback whale calls, based on the concepts of sub-
units as building blocks. It was found that the HMM classifi-
cation method potentially had a high level of performance 
with only a modest requirement in computational load and 
storage. Samaran et al. (2012) also used HMMs and MFCCs 
with success and suggest that in the future it should be possi-
ble to assign acoustic signatures to specific humpback whale 
individuals. 

Using a statistical approach, Gervaise et al. (2010) applied  
kurtosis estimation to create a general click detection algo-
rithm. The algorithm works on “the assumption that click 
trains are embedded in stochastic but Gaussian noise” and 
kurtosis can be applied as a “statistical test for detection”. 
Their algorithm adapted to a varying click centre frequency. 
After testing on datasets containing Cuvier’s beaked whale 
and beluga whale calls, they concluded that their method 
appeared to be promising for detecting click trains and isolat-
ing individual clicks, either alone or combined with addition-
al click detectors. It also performed well with a weak signal 
to noise ratio, where energy detectors are less appropriate. 

Taking a different approach and applying a statistical deci-
sion theory to the binary hypothesis of ‘presence’ or ‘ab-
sence’ of a call, Urazghildiiev & Clark (2006) applied a Gen-
eralised Likelihood Ratio Test (GLRT) detector to the calls 
of North Atlantic right whales. This was done by separating 
the data into chunks of 8-16s and calculating the FFT, the 
power spectral density and then applying a median filter. 
Then the inverse FFT of the product of the normalised data 
spectrum and the frequency response of the median filter is 
taken. This was compared for several 8-16s samples to gen-
erate the GLRT statistic, but GLRT showed poor perfor-

mance when the transient noise rate was high. However, 
GLRT was improved on in Urazghildiiev & Clark (2007) and 
Urazghildiiev et al. (2009) by using a multistage decision-
making process involving spectrogram and feature vector 
testing algorithms. It was made more resistant to transient 
noise and less computationally demanding. 

Information Entropy, Neural Networks, the Hilbert-
Huang Transform and Eigen-Clustering 

The use of information entropy in the detection of marine 
mammal vocalisations is relatively new, beginning with Erbe 
& King (2008). A detection method using information (or 
Shannon) entropy was demonstrated which detected calls 
from a variety of marine mammals and performed considera-
bly faster than real time. Bougher et al. (2012) used the same 
information entropy approach as part of their improved band-
limited processing approach to detect minke whale boings. 
This type of detector is ideal for tonal signals or signals 
where the energy content is contained in a limited number of 
frequency bands so it is suitable for a range of call types from 
a range of species. 

Artificial neural networks were employed by Dugan et al. 
(2010a, (2010b) as a component of the North Atlantic right 
whale CRITIC system. The CRITIC system uses several 
recognition methods running in parallel. These methods are 
the artificial neural network, a linear discriminant analysis 
component and a classification regression tree. In testing, it 
was found that although a comparison feature vector testing 
approach had a very low rate of false positives, the combina-
tion system had higher assignment rates. 

Earlier work on artificial neural networks was done by 
Deecke & Janik (2006). They demonstrated the use of an 
adaptive resonance theory neural network to identify and 
automatically categorise bottlenose dolphin and killer whale 
bioacoustic signals which can also be adapted to other spe-
cies. Bougher et al. (2012) used their band-limited processing 
technique to accomplish the same task on the same dataset 
with positive results.  

There has also been studies done on the use of the Hilbert-
Huang Transform (HHT) on the analysis of vocalisations by 
sperm and killer whales (Adam 2006a; Adam 2006b). It was 
found that the HHT was a viable alternative to the wavelet 
transform and in the case of the sperm whales it was found 
that only the first six modes were sufficient for regular click 
decomposition. It is well suited to transient, impulsive signals 
such as clicks. However, there does not appear to have been 
any more recent work on this particular analysis technique 
applied to marine mammal vocalisations. 

Finally, there has been some interesting work done by Tao 
(2009) on a new technique called Eigen-clustering which 
may have some use in bioacoustics recognition. There does 
not appear to have been any study on the application of this 
method to marine mammal vocalisations and it appears to be 
an area of potential investigation. 

CONCLUSION 

There are a large variety of detection and classification algo-
rithms to select from. They differ in many ways, such as 
performance, computational requirements, ability to cope 
with noise, ability to deal with multiple species and ability to 
be performed in real-time. This list represents the majority of 
techniques and sources that exist today.  
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Clearly the selection process in creating a robust smart, real-
time PAM system with automatic detection and classification 
involves rigorous evaluation, and a broad knowledge of the 
many techniques that exist. The author’s next task is to per-
form such an evaluation, focusing on the techniques which 
are most appropriate for application on low-power embedded 
computer systems. 
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