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The Maximum Sinkage of a Ship

T. P. Gourlay and E. O. Tuck

Department of Applied Mathematics, The University of Adelaide, Australia

A ship moving steadily forward in shallow water of constant depth h is usually subject to
downward forces and hence squat, which is a potentially dangerous sinkage or increase
in draft. Sinkage increases with ship speed, until it reaches a maximum at just below the
critical speed

p
gh. Here we use both a linear transcritical shallow-water equation and

a fully dispersive � nite-depth theory to discuss the � ow near that critical speed and to
compute the maximum sinkage, trim angle, and stern displacement for some example
hulls.

Introduction

For a thin vertical-sided obstruction extending from bottom
to top of a shallow stream of depth h and in� nite width,
Michell (1898) showed that the small disturbance velocity poten-
tial ê4x1y5 satis� es the linearized equation of shallow-water the-
ory (SWT)

‚êxx
C êyy

D 0 (1)

where ‚ D 1 ƒ F 2
h , with Fh

D U =
p

gh the Froude number based
on x-wise stream velocity U and water depth h. This is the same
equation that describes linearized aerodynamic � ow past a thin
airfoil (see e.g., Newman 1977 p. 375), with Fh replacing the
Mach number. For a slender ship of a general cross-sectional
shape, Tuck (1966) showed that equation (1) is to be solved sub-
ject to a body boundary condition of the form

êy4x1 0 5 D US 04x5

2h
(2)

where S4x5 is the ship’s submerged cross-section area at station
x. The boundary condition (2) indicates that the ship behaves in
the 4x1 y5 horizontal plane as if it were a symmetric thin airfoil
whose thickness S4x5=h is obtained by averaging the ship’s cross-
section thickness over the water depth. There are also boundary
conditions at in� nity, essentially that the disturbance velocity ïê
vanishes in subcritical � ow (‚ > 05, or else behaves like an out-
going wave in supercritical � ow (‚ < 05.
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As in aerodynamics, the solution of (1) is straightforward for
either fully subcritical � ow (where it is elliptic) or fully supercrit-
ical � ow (where it is hyperbolic). In either case, the solution has
a singularity as ‚ ! 0, or Fh

! 1. In particular the subcritical
(positive upward) force is given by Tuck (1966) as

F D �U 2

2� h
p

1 ƒ F 2
h

Z Z
dx d� B04x5 S04�5 log —x ƒ �— (3)

with B4x5 the local beam at station x. Here and subsequently the
integrations are over the wetted length of the ship, i.e., ƒL=2 <
x < L=2 where L is the ship’s waterline length.

This force F is usually negative, i.e., downward, and for a
fore-aft symmetric ship, the resulting midship sinkage is given
hydrostatically by

s D V

L2
CS

F 2
hp

1 ƒ F 2
h

(4)

where V D
R

S4x5dx is the ship’s displaced volume, and

CS
D ƒ L2

2�AWV

Z Z
dx d� B 04x5S04�5 log —x ƒ �— (5)

where AW
D

R
B4x5dx is the ship’s waterplane area. The nondi-

mensional coef� cient CS 104 has been shown by Tuck & Taylor
(1970) to be almost a universal constant, depending only weakly
on the ship’s hull shape.

Hence the sinkage appears according to this linear dispersion-
less theory to tend to in� nity as Fh

! 1. However, in practice,
there are dispersive effects near Fh

D 1 which limit the sinkage,
and which cause it to reach a maximum value at just below the
critical speed.
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Accurate full-scale experimental data for maximum sinkage are
scarce. However, according to linear inviscid theory, the maxi-
mum sinkage is directly proportional to the ship length for a given
shape of ship and depth-to-draft ratio (see later). This means that
model experiments for maximum sinkage (e.g., Graff et al 1964)
can be scaled proportionally to length to yield full-scale results,
provided the depth-to-draft ratio remains the same.

The magnitude of this maximum sinkage is considerable. For
example, the Taylor Series A3 model studied by Graff et al (1964)
had a maximum sinkage of 0089% of the ship length for the
depth-to-draft ratio h=T D 400. This corresponds to a midship
sinkage of 1.88 meters for a 200 meter ship. Experiments on
maximum squat were also performed by Du & Millward (1991)
using NPL round bilge series hulls. They obtained a maximum
midship sinkage of 1.4% of the ship length for model 150B with
h=T D 203. This corresponds to 2.8 meters midship sinkage for a
200 meter ship. Taking into account the fact that there is usually
a signi� cant bow-up trim angle at the speed where the maximum
sinkage occurs, the downward displacement of the stern can be
even greater, of the order of 4 meters or more for a 200-meter
long ship.

It is important to note that only ships that are capable of trav-
eling at transcritical Froude numbers will ever reach this maxi-
mum sinkage. Therefore, maximum sinkage predictions will be
less relevant for slower ships such as tankers or bulk carriers.
Since the ships or catamarans that frequently travel at transcriti-
cal Froude numbers are usually comparatively slender, we expect
that slender-body theory will provide good results for the maxi-
mum sinkage of these ships.

For ships traveling in channels, the width of the channel
becomes increasingly important around Fh

D 1, when the � ow is
unsteady and solitons are emitted forward of the ship (see e.g.,
Wu & Wu 1982). Hence experiments performed in channels can-
not be used to accurately predict maximum sinkage for ships in
open water. The experiments of Graff et al were done in a wide
tank, approximately 36 times the model beam, and are the best
results available with which to compare an open-water theory.
However, even with this large tank width, sidewalls still affect the
� ow near Fh

D 1, as we shall discuss.

Transcritical shallow-water theory (TSWT)

It is not possible simply to set ‚ D 0 in (1) in order to gain
useful information about the � ow near Fh

D 1. As with transonic
aerodynamics, it is necessary to include other terms that have
been neglected in the linearized derivation of SWT (1).

An approach suggested by Mei (1976) (see also Mei & Choi,
1987) is to derive an evolution equation of Korteweg-de Vries
(KdV) type for the � ow near Fh

D 1. The usual one-dimensional
forms of such equations contain both nonlinear and dispersive
terms. It is not dif� cult to incorporate the second space dimen-
sion y into the derivation, resulting in a two-dimensional KdV
equation, which generalizes (1) by adding two terms to give

‚êxx
C êyy

ƒ 3
U

êxêxx
C 1

3
h2êxxxx

D 0 (6)

The nonlinear term in êxêxx but not the dispersive term in
êxxxx was included by Lea & Feldman (1972). Further solutions
of this nonlinear but nondispersive equation were obtained by

Ang (1993) for a ship in a channel. Chen & Sharma (1995) con-
sidered the unsteady problem of soliton generation by a ship in
a channel, using the Kadomtsev-Petviashvili equation, which is
essentially an unsteady version of equation (6). Although they
concentrated on � nite-width domains, their method is also appli-
cable to open water, albeit computationally intensive. Further
nonlinear and dispersive terms were included by Chen (1999),
allowing � nite-width results to be computed over a larger range
of Froude numbers.

Mei (1976) considered the full equation (6) in open water and
provided an analytic solution for the linear case where the term
êxêxx is omitted. He showed that for suf� ciently slender ships
the nonlinear term in equation (6) is of less importance than the
dispersive term and can be neglected; also that the reverse is true
for full-form ships where the nonlinear term is dominant. This is
also discussed in Gourlay (2000).

As stated earlier, most ships that are capable of traveling at
transcritical speeds are comparatively slender. For these ships it
is dispersion, not nonlinearity, that limits the sinkage in open
water. Nonlinearity is usually included in one-dimensional KdV
equations by necessity, as a steepening agent to provide a bal-
ance to the broadening effect of the dispersive term in êxxxx. In
open water, however, there is already an adequate balance with
the two-dimensional term in êyy . This is in contrast to � nite-
width domains, which tend to amplify transcritical effects and
cause the � ow to be more nearly unidirectional. Hence nonlinear-
ity becomes important in � nite-width channels to such an extent
that steady � ow becomes impossible in a narrow range of speeds
close to critical (see e.g., Constantine 1961, Wu & Wu 1982).

Therefore, for slender ships in shallow water of large or in� -
nite width, we can solve for maximum squat using the simple
transcritical shallow-water (TSWT) equation

‚êxx
C êyy

C ƒêxxxx
D 0 (7)

(writing ƒ D h2=3), subject to the same boundary condition (2).
The term in ƒ provides dispersion that was absent in the SWT,
and limits the maximum sinkage.

Solution

The solution of the TSWT equation (7) for the potential ê,
subject to the boundary condition (2), can be written (Mei 1976)
as a Fourier integral

ê4x1 y5 D Ui

4� h

Z
d�S4�5

Z ˆ

ƒˆ

k

‹
eik4�ƒx5ƒ‹—y—dk (8)

where ‹2 D ‚k2 ƒ ƒk4. If ‚ > 0 and k2 < ‚=ƒ, the parameter
‹ can be taken as real positive, and the interpretation of (8) is
straightforward. However, if ‚ < 0, or if ‚ > 0 and k2 > ‚=ƒ,
then ‹2 is negative and we must choose the correct sign of its
pure-imaginary square root. The basis for this choice is that the
solution must then represent outgoing not incoming waves, and
this is so if we take

‹ D
(

ƒi
p

ƒk4 ƒ ‚k21 ‚k2 ƒ ƒk4 < 0 and k > 0
Ci

p
ƒk4 ƒ ‚k21 ‚k2 ƒ ƒk4 < 0 and k < 0

(9)

With that interpretation, the k-integrand in (8) is de� ned for all ‚
and all k, excepting the integrable singularities at k D

p
‚=ƒ.
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Pressure, forces, and squat

The pressure excess over hydrostatic is given by the linearized
Bernoulli equation as p D ƒ�U êx . Matching with the inner � ow
as in Tuck (1966) gives the leading order pressure on the hull as

p4x5 D ƒ�U êx
—
yD0

or

p4x5 D ƒ �U 2

4� h

Z
d�S4�5 lim

y!0

Z ˆ

ƒˆ

k2

‹
eik4�ƒx5ƒ‹—y— dk (10)

The (positive upward) vertical force on the ship is F D R
p4x5�

B4x5dx; thus

F D ƒ �U 2

4� h

Z ˆ

ƒˆ

k2

‹
SS4k5SB ü 4k5dk (11)

Similarly the trim moment M D ƒ
R

xp4x5B4x5dx (measured pos-
itive bow-up) becomes

M D �U 2

4� h

Z ˆ

ƒˆ

k2

‹
SS4k5xB

ü
4k5dk (12)

where

SS4k5 D
Z

S4x5eikxdx

SB4k5 D
Z

B4x5eikxdx (13)

xB4k5 D
Z

xB4x5eikxdx

are Fourier transforms of S4x5, B4x5 and xB4x5 respectively, a
star denoting complex conjugate. Again, these integrals are taken
over the wetted length of the ship.

Mei (1976) expressed the transcritical force in a form similar to
(3), where the logarithm is replaced by a kernel involving Bessel
and Struve functions. However, for computational purposes, the
Fourier-transformed version (11) appears to be preferable.

We note using the identity

1

2

Z ˆ

ƒˆ
—k—SS4k5SB ü 4k5 dk

D ƒ
Z Z

dx d� B 04x5S04�5 log —x ƒ �— (14)

that, away from Fh
D 1, the TSWT vertical force (11) agrees with

the SWT result (3) in the limit as ƒ ! 0, i.e., when transcriti-
cal dispersion effects are negligible. In performing this limit, we
must scale ƒ using the ship’s length L, so that we are in essence
taking the limit as h=L ! 0. Similarly the trim moment (12), and
therefore actual sinkage and trim, all agree with SWT in the limit
h=L ! 0.

Once the vertical force and trim moment are known, we can
solve simultaneously for the (downward) midship sinkage s and
bow-up trim angle ˆ using the hydrostatic equilibrium relations

ƒ F

�g
D

Z
8s C xˆ9B4x5dx

M

�g
D

Z
x8s C xˆ9B4x5 dx

(15)

Symmetric hulls

To illustrate some properties of the TSWT, we shall now con-
sider the special case of ships with fore-aft symmetry. In that
case, SB and SS are real-valued even functions of k, and the star
in (11) is unnecessary. The integrand in (11) is odd in k for
supercritical � ow (‚ < 0), so that the sinkage force is identically
zero. For subcritical � ow, the contributions from k >

p
‚=ƒ and

k < ƒ
p

‚=ƒ, where ‹ is imaginary, similarly cancel each other,
so (11) reduces to

F D ƒ �U 2

2� h

Z p
‚=ƒ

0

k
p

‚ƒ ƒk2

SS4k5SB4k5dk (16)

Thus the transcritical sinkage force is a predominantly
subcritical-like or elliptic phenomenon, depending on the long-
wave part —k— <

p
‚=ƒ of the wave number range where all distur-

bances due to the ship tend to zero at in� nity. This is consistent
with the result of Tuck (1966) that the dispersionless supercritical
sinkage vanishes for ships with fore-aft symmetry.

Conversely, the subcritical trim moment for fore-aft symmetric
vessels can be written

M D �U 2

2� h

Z ˆ

p
‚=ƒ

ik
p

ƒk2 ƒ ‚
SS4k5xB4k5dk (17)

since xB4k5 is pure imaginary and odd in k. There is zero contri-
bution to the moment from the range —k— <

p
‚=ƒ. (For supercrit-

ical � ow the lower terminal
p

‚=ƒ in (17) is replaced by zero.)
Hence transcritical trim is a predominantly supercritical-like or

hyperbolic phenomenon, depending on large wave numbers where
the ship produces an outgoing short wave at in� nity. Again, this
is consistent with the trim vanishing in subcritical dispersionless
� ow for fore-aft symmetric ships (Tuck 1966), and taking a large
bow-up value in supercritical � ow, which is anticipated in the
transcritical range.

For fore-aft symmetry, the hydrostatic coupling between sink-
age and trim vanishes, and (15) becomes

F D ƒ�gAWs

M D �gIWˆ
(18)

where AW
D

R
B4x5 dx and IW

D
R

x2B4x5 dx. Therefore the sink-
age and trim displacements are given by

s D F 2
h

2�AW

Z p
‚=ƒ

0

k
p

‚ ƒ ƒk2

SS4k5 SB4k5 dk

ˆ D F 2
h

2� IW

Z ˆ
p

‚=ƒ

ik
p

ƒk2 ƒ ‚
SS4k5 xB4k5 dk

(19)

Finite-width channel

In the case of a ship moving along the center of a channel
of width 2w, assuming steady � ow we can still solve (7) using
Fourier-transform techniques. This time we use a wall boundary
condition on y D w to obtain the following expressions for the
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vertical force and trim moment:

F D ƒ �U 2

4� h

Z ˆ

ƒˆ

k2

‹
coth4‹w5 SS4k5 SB ü 4k5 dk

M D �U 2

4� h

Z ˆ

ƒˆ

k2

‹
coth4‹w5 SS4k5 xB

ü
4k5 dk

(20)

Here ‹ has the same de� nition as for the open water TSWT.
In addition to the singularities at k D

p
‚=ƒ, for —k— >

p
‚=ƒ

there are singularities in coth4‹w5 at

k2 D ‚

2ƒ
1 C

s

1 C 4n2� 2ƒ

w2‚2
(21)

for integer values of n. All of these singularities, including
k D

p
‚=ƒ, are simple poles. The path of integration must pass

above these poles in the complex k-plane in order that there be
no disturbance as x ! ƒˆ.

We can see that the numerical evaluation of (20) is compli-
cated. Although the sum of the residues is straightforward to
evaluate (and in fact this sum is zero for symmetric hulls), the
Cauchy principal-value part of the integral is dif� cult, due to the
in� nite number of unequally spaced poles. Even for symmetric
hulls there is no cancelation for —k— >

p
‚=ƒ; the integrand is

even in k, whereas in in� nite width it is odd.
In any case, we expect that a steady � nite-width theory of this

sort will be of limited validity. Linearized slender-body theory is
unable to predict the onset of unsteadiness, which is an important
feature of transcritical channel � ow. Only when Fh is not too
close to 1, or in very wide channels, is the � ow still steady and
this theory applicable.

Finite-depth theory

The dif� culties inherent in solving the � ow � eld for Fh 1 can
also be overcome by removing the shallowness assumption com-
pletely. This method was introduced by Tuck & Taylor (1970),
who used slender-body theory to describe the � ow around a ship
moving in a general (not necessarily shallow) depth of water. Here
we make some important improvements on their original method
and compute sinkage and trim for ships with or without fore-aft
symmetry.

Tuck & Taylor found that the vertical force and trim moment
are each the sum of two components, i.e.,

F D Fˆ C Fd

M D Mˆ C Md

(22)

Here Fˆ and Mˆ are the force and moment on the lower half of
an equivalent double body in an unbounded � uid; Fd and Md are
a correction due to the � nite depth of water.

The calculation of Fˆ and Mˆ is a well known but dif� cult
problem. Here we approximate Fˆ using the analytic formula of
Havelock (1939) for a spheroid, approximating each hull as an
equivalent slender spheroid of the same length and displacement,
as done by Tuck & Taylor (1970). This gives for Fˆ

Fˆ D �U 2AW…2 log
…

2
C 3

2
ƒ … (23)

with AW again the waterplane area. The slenderness … is equal
to the beam/length ratio of the equivalent spheroid; for a general
hull this is given by

… D
r

12
�

C8 (24)

Here C8 is the volumetric coef� cient V =L3, with V the displaced
volume.

For fore-aft symmetric ships, Mˆ is identically zero. Since the
hull shapes that we are considering are close to fore-aft symmet-
ric, we shall not attempt to calculate Mˆ , assuming instead that
it is small enough to be neglected. This becomes valid for gen-
eral ships in the shallow-water limit, as the depth correction Md

has been shown (Tuck & Taylor 1970) to formally dominate Mˆ
in shallow water.

The depth corrections Fd and Md satisfy

Fd
D ƒ�U 2

4� 2

Z ˆ

ƒˆ
k2 SS4k5 SB ü 4k5 A4k5 dk

Md
D �U 2

4� 2

Z ˆ

ƒˆ
k2 SS4k5 xB

ü
4k5 A4k5 dk

(25)

where SS, SB and xB are as in (13). Here A4k5 is given by

A4k5 D ƒ2
Z ˆ

—k—

1p
q2 ƒ k2

� 1 C q

F 2
h k2h ƒ q tanh4qh5

dq (26)

The integrand in (26) has a simple pole at q D q0 , where

q0 tanh4q0h5 D F 2
h k2h (27)

In order that there be no waves far upstream, this pole must be
avoided by passing above it in the complex q-plane when k > 0,
and beneath it when k < 0 (Gourlay 2000).

Since the integrand in (26) is pure real, the real part of A4k5 can
be written as a Cauchy principal value integral, and the imaginary
part can be evaluated from the residue at the pole. This gives

Im8A4k59 D ƒ2� q0 sgn 4k5p
q2

0
ƒ k2 q0h sech24q0h5 C tanh4q0h5

(28)

which corrects the Tuck & Taylor (1970) result.
We note that Re8A4k59 is even and Im8A4k59 is odd (as they

must be for F to be pure real in (25)). Hence we need only
discuss (26) for k > 0.

The pole in (26) will only occur in the range of integration if
q0 > k. For Fh > 1 this is always true, and the imaginary part of
A4k5 as given by (28) is nonzero but � nite for all k. The real
part can be evaluated by a simple numerical integration once a
substitution is made to remove the singularity at q D k.

When Fh < 1, q0 is only greater than k for k > k0 , where

tanh4k0h5

k0h
D F 2

h (29)

This imaginary part of A4k5 is zero for k < k0 and given by (28)
for k > k0 . Since q0

D k when k D k0, (28) is singular around
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k D k0. Similarly, the Cauchy principal-value integral in (26) is
unbounded when q0 and k coincide, as the denominator acts like
4q ƒ k5ƒ3=2 around q D k. The full 4q1 k5 double integrals in (25)
do still exist, but we must take care in evaluating them around
4q1 k5 D 4q01 k05. The imaginary part of A4k5 for Fh < 1 was
not included by Tuck & Taylor (1970), leading to the incorrect
conclusion of zero subcritical trim for fore-aft symmetric hulls.

As stated by Tuck & Taylor, the corrections Fd and Md are
inversely proportional to depth in the shallow-water limit, and
therefore formally dominate Fˆ and Mˆ as h=L ! 0. It can also
be shown by taking the h=L ! 0 limit of equation (26) that, away
from Fh

D 1, the vertical force and moment agree with the simple
shallow-water theory (SWT). In the transcritical region Fh 1,
Gourlay (2000) has shown that the � nite-depth theory agrees with
TSWT in the shallow water limit.

Scaling

The TSWT force (11) and moment (12) were derived in
terms of dimensional variables. However, they may be written in
dimensionless form, since they and the TSWT and FDT theories
described are all linear. For a given shape of ship, the dimension-
less products

F

�gSmaxBmax

and
M

�gSmaxBmaxL
(30)

are functions only of Fh and h=L. Solving (15) then tells us that

s

L
D C8 f Fh1

h

L

ˆ D C8 m Fh1
h

L

(31)

where the functions f , m depend only on the shape of ship.
Therefore, for a given shape of ship, h=L ratio and Froude

number, the ship may be stretched in the streamwise or trans-
verse directions, with the only in� uence on s=L coming from C8.
In particular, s=L is independent of scale, if the ship’s propor-
tions are kept constant. This allows us to justi� ably “scale up”
model test results according to this theory. Since the trim angle
ˆ is independent of scale, the bow and stern sinkages are also
proportional to ship length for constant values of h=L and Fh.

In FDT, only the force and moment corrections Fd and Md (25)
can be written so as to allow stretching in the transverse direc-
tions. Fˆ and Mˆ both have complicated dependence upon beam
and section area and so cannot be scaled in this way. However,
the total FDT force and moment can still be written as dimension-
less products (30), provided the proportions of the ship remain
constant. Therefore s=L and ˆ are still independent of scale in
FDT, and can be justi� ably scaled up with increasing ship size.

Results

Comparing TSWT and FDT

In order to compare TSWT and FDT numerically, we � rst con-
sider a fore-aft symmetric hull with parabolic waterplane and
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s/L
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FDT

Fig. 1 Sinkage (as a fraction of ship length) as a function of Fh for
parabolic hull, using TSWT and FDT

section area curves, i.e.,

B4x5 D Bmax 1 ƒ 4x2

L2

S4x5 D Smax 1 ƒ 4x2

L2

(32)

The maximum beam and section area are chosen to be in the same
proportions as the Taylor A3 hull, which will be discussed later.
Therefore we have chosen L=Bmax

D 1008 and L2=Smax
D 37803

for these results.
Figure 1 shows the scaled midship sinkage s=L as a function

of Fh for this hull, with h=L D 00125, as calculated using both
transcritical theories. We see that, at this relatively small value of
h=L, the two theories produce very similar results. The sinkage
in each case rises to a maximum at Fh

D 00965 before tending
sharply back toward zero. For TSWT it can be shown analytically
that the sinkage tends to zero in a square-root manner as Fh

! 1,
and that it is identically zero for Fh > 1 as in SWT (Tuck 1966).
FDT has similar properties, although there is an apparent small
but non-zero supercritical sinkage which we believe to be spuri-
ous (see later).

We notice that the maximum sinkage according to FDT
(s=L D 000097) is slightly higher than according to TSWT
(s=L D 000092).

Whereas TSWT gives a smooth monotone increase in the sink-
age until it reaches the maximum, FDT is slightly oscillatory in
slope. This is a property of the governing equations and not of
the numerical method, as the graph was reproduced exactly with
different grid spacings in each of the variables. Being fully dis-
persive, FDT retains some bow-stern wave interference effects
that are familiar in classical ship hydrodynamics, and which, for
example, lead to analogous oscillations in wave resistance curves
for ships.

The present FDT results can be compared with those of Tuck &
Taylor (1970). The maximum sinkage given there for one partic-
ular value of h=L agrees moderately well (within 10%) with our
predictions, although their sinkage curve is more oscillatory at
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Fig. 2 Bow-up trim angle (in deg) as a function of Fh for parabolic hull
with h/L D 00125, using TSWT and FDT

lower Froude numbers. This may have been due to the compu-
tations in Tuck & Taylor (1970) not handling the singularity in
A4k5 for Fh < 1 with adequate numerical precision.

A problem with FDT is an anomalous behavior at large Froude
numbers. The in� nite-depth force contribution Fˆ increases in
proportion to U 2; if the theory is to agree with TSWT in the
shallow water limit, Fˆ should be canceled by the correction Fd

at high Froude numbers, leading to a net force that tends to zero
at in� nite speed. However, any error in approximating either Fˆ
or Fd will ultimately produce a total force that is erroneously
quadratic in U for large Fh. This is already beginning to be appar-
ent at the right side of Fig. 1, and the present FDT results (espe-
cially with use of the Havelock approximation to Fˆ) are not to
be considered accurate at large Fh.

Figure 2 shows the corresponding trim angles for the same
hull, according to the two theories. According to both theories,
the ship will have a large bow-up trim angle in the neighborhood
of Fh

D 1. The maximum trim occurs at Fh
D 0099 according to

both theories, which is slightly higher than the Froude number at
which the maximum sinkage occurs (Fh

D 00965).
As is the case with sinkage, the maximum trim according to

FDT (2.88 deg) is slightly higher than according to TSWT (2.65
deg). Also, the TSWT curve is smooth, while the FDT is oscilla-
tory at lower Froude numbers. The discrepancy for large Froude
numbers cannot be due to an error in approximating Mˆ , since
this is identically zero. We suspect that the correction Md may be
quite sensitive for large Froude numbers, and place more faith in
the TSWT in this range.

Comparison with experimental results

We have used both the TSWT and FDT to compute the midship
sinkage of a “Taylor standard series” hull (Gertler 1954), which
corresponds to a slightly non-fore-aft-symmetric ship. A model
hull of that shape designated A3 by Graff et al (1964) was used;
this has L=B D 1008, L=T D 3204 (with T the draft) and volu-
metric coef� cient C8 D 000017. The experimental results of Graff
et al (1964) for the same hull are reproduced here for comparison.
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Fig. 3 Sinkage (as a fraction of ship length) as a function of Fh for Tay-
lor Series hull, with h/L D 00125. TSWT, FDT, and experimental results

Figure 3 shows the midship sinkage as a function of Froude
number for the A3 hull, traveling in water of scaled depth h=L D
00125. As an example, this would correspond to a 200 meter ship
with a draft of 6.2 meters, traveling in water of depth 25 meters.
The sinkage is calculated using TSWT and FDT theories, with
the experimental results also shown.

We see that both theories agree reasonably well with the exper-
imental results. In particular, the maximum sinkage determined
experimentally (s=L D 000089) lies in between that predicted by
TSWT (s=L D 000081) and by FDT (s=L D 000094). There is a
difference in the Froude number at which this maximum sinkage
occurs, being at Fh

D 0089 experimentally, although we predict it
at Fh

D 00965, according to both theories.
The rising of the ship in the water, for Fh slightly greater

than one, is not predicted by either of the theories. For larger
Fh, the predicted sinkage is very close to zero, in accordance
with the experimental results. Since this ship is not quite fore-
aft symmetric, TSWT gives a very small but nonzero sinkage for
Fh > 1, which agrees reasonably with the experimental results.
The quadratic-type error in FDT again becomes apparent for
large Fh.

At this point we must question whether the experimental results
of Graff et al (1964), which were obtained in a tank of large but
� nite width, adequately approximate open water. The numerical
results of Chen & Sharma (1995) and Chen (1999), both based
on unsteady theory, predict that unsteady solitons of signi� cant
amplitude would be generated in such a tank width in a range
of Froude numbers roughly between 1 and 1.07. These unsteady
oscillations, which were actually witnessed in the experimental
results of Graff et al (1964) at low values of h=L, prevented them
from giving any results for h=L < 00125.

According to the numerical results of Chen & Sharma (1995),
the effect of such solitons on sinkage and trim is considerable in
that narrow range of Froude numbers. Speci� cally, it seems likely
that the negative supercritical sinkage observed in the results of
Graff et al (1964) may be solely a � nite-width effect.

According to a recent study by Sharma & Chen (2000) which
concentrated on the effect of tank width, the Froude number at

MARCH 2001 JOURNAL OF SHIP RESEARCH 55



-0.001

-0.002

0

0.002

0.004

0.006

0.001

0.003

0.005

0.007
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

s/L

Fh

TSWT
FDT

experiment

Fig. 4 Sinkage (as a fraction of ship length) as a function of Fh for Tay-
lor Series hull, with h/L D 0025. TSWT, FDT, and experimental results

which the maximum sinkage occurs is seen to decrease as the tank
width decreases. Therefore the discrepancy in the Froude number
at which the maximum sinkage occurs may also be due to � nite-
width effects in the experimental results. The present predictions
of the Froude number for maximum sinkage may in fact be more
accurate as estimations for fully-open water than any observations
from � nite-width tank experiments.

Figure 4 shows the midship sinkage for the same ship traveling
in twice the depth of water, i.e., h=L D 0025. This corresponds to
a depth of 50 meters for our example hull of length 200 meters
and draft 6.2 meters. In this case we see that TSWT signi� cantly
underestimates the maximum sinkage, indicating that the shallow-
water assumption that h=L is small is no longer acceptable. FDT,
however, still gives a maximum sinkage of s=L D 000066 at
Fh

D 0086, which is impressively accurate compared to the exper-
imental maximum of s=L D 000068 at Fh

D 0088. Clearly the FDT
is appropriate and accurate for such non-shallow-water depths.

Trim and stern sinkage

The trim of the A3 hull, as predicted using TSWT, was also
compared to experimental results. This is shown in Fig. 5. There
is fair agreement in this case, despite the predicted peak being
sharper and higher than the experimental results. It is thought
that this discrepancy may also be due to � nite-width effects in
the experimental results, as numerical results of Sharma & Chen
(2000) show a broader, � atter peak for this width of channel com-
pared to wider channels.

The large bow-up trim experienced by ships in the transcritical
speed range means that the ship’s stern is particularly vulnerable
to grounding for Froude numbers very close to 1. Since the max-
imum midship sinkage and maximum trim occur at close to the
same Froude number, the stern sinkage will be very large around
this Froude number.

In Fig. 6 we have plotted the scaled stern sinkage sstern=L (given
by s=L C ˆ=2, with ˆ in radians) for the A3 and parabolic hulls.
This is found using TSWT and plotted as a function of Froude
number. We see that for the A3 hull the maximum stern sinkage
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Fig. 5 Bow-up trim angle (in deg) as a function of Fh for Taylor Series
hull, with h/L D 00125. Comparison of TSWT with experiment

is sstern=L D 000285. The experimental results give a smaller max-
imum of sstern=L D 000228, the difference mainly being due to the
difference in trim angles.

For the parabolic hull, which has a larger C8, the stern sinkage
reaches sstern=L D 000308. For a 200 meter ship, these results cor-
respond to a predicted stern sinkage of 5.7 meters for the A3 hull
(compared to 4.56 meters according to the � nite-width experi-
mental results) and 6.16 meters for the parabolic hull.

Maximum sinkage

We have seen that when midship and stern sinkage are plot-
ted against Fh for a � xed value of h=L, they both reach a maxi-
mum just below Fh

D 1. In fact, at very high supercritical Froude
numbers, the stern sinkage may reach a higher value than in the
transcritical range; however, the speeds required for this to occur
are not realistic for most displacement hulls.
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By � nding the maximum sinkage with respect to Fh for each
value of h=L, we can plot the maximum midship and stern sink-
age as a function of h=L. This is shown in Fig. 7 for the Taylor
A3 hull. The at-rest underkeel clearance (UKC) is also shown for
each depth.

Where the maximum sinkage is larger than the UKC, there
exists a range of Froude numbers for which the ship is predicted
to scrape the sea � oor. Therefore, the point in Fig. 7 where the
UKC line crosses the maximum stern sinkage curve gives the
value of h=L for which the stern is predicted to just touch the sea
� oor at one particular Froude number. On the other hand, if the
ship were unable to trim, the midship would touch the sea � oor at
the value of h=L for which the maximum midship sinkage curve
crosses the UKC line.

Therefore we see that for the Taylor A3 hull the stern is at risk
of grounding for h=L < 00078, which corresponds to h=T < 2052.
Similarly, if trim were not taken into account, the midship would
be at risk of grounding for h=L < 00052, which corresponds to
h=T < 1068. These are large at-rest clearances, but are necessary
for ships which intend to travel at transcritical speeds.

Conclusions

We have used two slender-body methods to solve for the sink-
age and trim of a ship traveling at arbitrary Froude number,
including the transcritical region.

The transcritical shallow water theory (TSWT) developed by
Mei (1976) has been extended and exploited numerically, using
numerical Fourier transform methods to give sinkage and trim
via a double numerical integration. This theory has also been
extended to the case of a ship moving in a channel of � nite width;
however, the numerical dif� culty in computing the resulting force
integral, and its limited validity, mean that the open-water theory
is more practically useful.

The � nite-depth theory (FDT) developed by Tuck & Taylor
(1970) has also been improved and used for general hull shapes.
This theory gives a sinkage force and trim moment that are

slightly oscillatory in Fh. Since the theory involves summing
in� nite-depth and � nite-depth contributions, both of which vary
with U 2 at high Froude numbers, any error will grow approxi-
mately quadratically with U . Therefore we cannot use this the-
ory at large supercritical Froude numbers. Also, the dif� culty in
� nding the in� nite-depth contributions numerically, as well as
the extra numerical integration needed to compute the force and
moment, make the FDT slightly more dif� cult to implement than
TSWT.

When comparing our open water theoretical results to the
experimental results of Graff et al (1964) in a wide channel, both
theories were seen to give good results in the shallow water case
h=L D 00125. The main discrepancies between the theoretical and
experimental results at this depth were: the trim predicted using
TSWT has a sharper, higher peak than was found experimentally;
the maximum sinkage was predicted to occur at a slightly higher
Froude number than was observed experimentally; and neither of
the theories predicted the rise of the ship in the water that was
observed experimentally at low supercritical Froude numbers.

All of these discrepancies are explained qualitatively by the
effect of the channel walls on the experimental results, which
means that the theory looks very promising for predicting trans-
critical squat in open water. However, we cannot properly judge
the accuracy of the method without true open water results with
which to compare.

One departure from the experimental results that is not
explained by � nite-width effects is the lesser angle of trim
predicted by TSWT at supercritical Froude numbers. Although
sinkage is basically an inviscid phenomenon, it is thought that
viscosity may affect the trim; boundary-layer separation near the
stern would tend to decrease the pressure there and increase the
bow-up trim moment slightly.

In the deeper-water case h=L D 0025, for which the channel
walls have less effect on the experimental results, we found that
the shallow-water TSWT was outside its range of validity. Mean-
while, however, the fully-dispersive FDT accurately predicts the
maximum sinkage and the Froude number at which this occurs.

In practice, scenarios in which ships are at risk of grounding
will normally have h=L < 00125. Since the TSWT is a shallow-
water theory and it works well at h=L D 00125, we expect that it
will give even better results at smaller, practically useful values
of h=L. Also, since the TSWT and FDT give almost identical
results for h=L < 00125, and the TSWT is a much simpler theory,
we recommend it as a simple and accurate method for predicting
transcritical squat in open water. Of particular interest to mariners
is the maximum stern sinkage, which, as we here demonstrated,
can be remarkably and dangerously large at close to critical speed.
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