
Ocean Engineering 2008, Vol. 35, No. 2, pp. 191-200. 

Slender-Body Methods for Predicting Ship Squat 
Tim Gourlay 

Centre for Marine Science and Technology, Curtin University 
 

Abstract 
 
A review is made of linear slender-body methods for predicting the squat of a ship in 
shallow open water, dredged channels or canals. The results are summarized into a 
general formula based on Fourier transforms, and the method is extended to cater to 
stepped canals. An approximate solution for canals of arbitrary cross-section is 
proposed. 
 
1. Introduction 
 
Thin-ship methods have been used for predicting the wave resistance of ships since 
Michell (1898). These formulations assume that the ship’s beam is small compared to 
its length, in which case generated wave amplitudes are also small compared to the 
ship’s length. This allows linearization of the free surface boundary condition, and a 
series solution in increasing powers of the beam/shiplength ( LB / ) ratio. Usually the 
ship draft is also small compared to the ship length, further reinforcing the assumption 
of small free surface displacements, and allowing the flow to be computed using 
slender-body theory (Tuck 1964).  
 
For a slender ship moving in shallow water, the water depth may also be small 
compared to the shiplength. In this case the flow becomes essentially two-
dimensional, with horizontal flow velocities dominating over vertical flow velocities. 
Solution of the leading-order flow is then simplified. Tuck (1966) solved the leading-
order flow around a slender ship in shallow open water of constant depth. Although 
this leading-order solution could not be used to calculate wave resistance, it was able 
to calculate dynamic sinkage and trim, except when the ship speed was close to the 
“critical” speed of long waves in shallow water ( gh= , with g = gravitational 
acceleration, h = water depth).  
 
Since 1966, linear slender-body shallow-water theory has been extended to various 
bottom topographies, including both steady and unsteady flow. Nonlinear terms have 
been included in the formulation for narrow channels, and higher-order terms have 
been included for transcritical flow.  
 
In this article we shall be considering only linear first-order theories. Such methods 
are best suited to long, slender hulls such as large high-speed catamaran demihulls 
( 10.005.0/ −≈LB ) or frigates and destroyers ( 12.010.0/ −≈LB ). However the 
methods have also been successfully used to predict the squat of containerships 
( 15.011.0/ −≈LB ) and even capesize bulk carriers ( 20.016.0/ −≈LB ).



 

We shall be concentrating on the case of steady “subcritical” flow, which is of most 
interest to mariners. In the 1960s and 1970s, this flow was solved for various bottom 
topographies, namely: 

- open water, constant depth (Tuck 1966) 
- canal of constant depth and width (Tuck 1967) 
- dredged channel with constant depth in the inner and outer regions (Beck et al 

1975)  
 
Here we shall summarize these results and rewrite them in a form which is more 
applicable to modern transom-stern ships. We shall also provide results for another 
bottom topography, and discuss extension of the method to a canal of arbitrary cross-
section. 
 
2. Open water of constant depth 
 
For a ship moving in open shallow water of constant depth, Tuck (1966) showed that 
the ship can be modelled as a line of sources and sinks, with sources forcing the flow 
outwards where the ship’s section area is increasing towards the stern, and sinks 
pulling the flow inwards where the section area is decreasing towards the stern. 
 
Specifically, if we consider a ship-fixed coordinate system with longitudinal 
coordinate x centred at midships (positive towards the stern) and transverse coordinate 
y centred on the ship centreline (positive to starboard), the leading-order disturbance 
velocity potential φ satisfies the partial differential equation 
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Here hF  is the depth-based Froude number ghU / , with U the free stream speed 
(equal to the ship speed in earth-fixed coordinates). For subcritical flow, such as we 
are considering here, 1<hF  and equation (1) is an elliptic partial differential 
equation. It is subject to the inner boundary condition 
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where S(x) is the hull cross-sectional area at position x, and the prime denotes the 
derivative dS/dx. We also have the far-field boundary condition 
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By considering the velocity potential for a line of moving sources, and choosing the 
source strengths so that equation (2) is satisfied, Tuck found expressions for the 
velocity potential and resulting pressure field, involving direct integration of a 
singular integral. 
 
Here we give an alternative solution which uses Fourier transforms rather than source 
summation. By taking the Fourier transform of equation (1) and solving subject to 
boundary condition (2), the velocity potential may be written in the form 
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We have directly used the Fourier transform of the derivative of the section area, 
namely 
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Hydrodynamic pressure, vertical force and trim moment can now be calculated as in 
Tuck (1966). For example, the upwards vertical force Z on a ship which is held 
vertically at its static draft and trim is 
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Here )(kB denotes the Fourier transform of B(x), and the asterisk denotes complex 
conjugate. The bow-down trim moment is found by replacing )(kB by )(kxB , where 

)(kxB is the Fourier transform of xB(x). 
 
The Fourier integral representation (6) provides an alternative method for calculating 
the vertical force and trim moment, with the computational advantage of having a 
non-singular integrand. Once the vertical force and trim moment have been computed, 
the sinkage and trim then follow hydrostatically, as described in Tuck (1966). 
 
3. Canal of constant depth and width 
 

 
Figure 1: Cross-section through a ship in a canal of constant depth and width 

 
Figure 1 shows a cross-section through a ship in a canal of constant depth and width, 
looking from ahead of the ship. The ship is taken to be moving along the centreline of 
the canal, so that no cross-flow occurs. In this case, the governing partial differential 
equation (1) and hull boundary condition (2) still apply. The far-field boundary 
condition used in open water is replaced by a wall boundary condition. 
 
This problem was solved by Tuck (1967) using Fourier transforms. It was found that 
the percentage increase in midship sinkage from open water to a rectangular canal 
was governed by the quantity 21 hL

w F−  , where L is the ship’s waterline length. 
Therefore increasing the ship speed amplifies the effect of finite channel width on 
squat. 
 
The method used in Tuck (1967) involved integrating the hull boundary condition (2) 
by parts, and applying the assumption of zero section area at the bow and stern. For 
modern transom stern ships, this assumption would require the flow to “bang shut” 
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immediately behind the transom. When the ship is travelling fast enough for flow to 
detach smoothly from the transom, a better method may be to use the hull boundary 
condition (2) in its original form, setting S'(x) = 0 ahead of and behind the ship. 
Therefore the Fourier transform is calculated using equation (5) over the wetted 
length of the ship. This models the ship as having zero section area ahead of the bow, 
its usual section area over its wetted length, and a transom that extends downstream to 
infinity with constant cross-section. This method ensures smooth flow detachment 
from the transom. 
 
Re-deriving the solution, without the assumption of zero section area at the stern, 
yields the alternative solution valid for both cruiser and transom sterns: 
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Again, a similar expression exists for the trim moment, and sinkage and trim follow 
from hydrostatics. 
 
4. Dredged channel 
 

 
Figure 2: Cross-section through a ship in a dredged channel with constant inner and outer 

depths 
 
Figure 2 shows a ship in a dredged channel, with the dredged channel and the area 
either side each having constant depth. Again, the ship is taken to be moving along 
the centreline of the channel. 
 
This problem was solved by Beck et al (1975) using Fourier transforms. They used 
the same partial differential equation (1) and hull boundary condition (2), and 
matched the velocity potential φ  and transverse flux yh ∂

∂φ  on each side of the step 
depth continuity. Again, the assumption of zero section area at the ship’s stern was 
applied, making the method less applicable to modern transom-stern ships. 
 
Re-derivation of the solution using the derivative of the section area yields, using the 
present notation, 
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The function K(k) is given by 
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Here ( ) 22
1

2 1 kF−=λ , with 11 / ghUF = . The sign of λ  must be chosen so that the 
far-field solution either tends towards zero when the outer flow is subcritical ( 11 ≤F ), 
or represents outgoing rather than incoming waves when the outer flow is 
supercritical ( 11 ≥F ). These requirements yield 
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Note that for the special case when 11 =F , we have  
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This yields the same result as for the canal described in Section 3, with ww =ch . 
Therefore if the ship is travelling at such a speed that the flow outside the channel is 
critical, the flow within the channel is the same as if the ship were in a wall-sided 
canal of the same width. This is because when flow outside the channel is critical, 
there is zero transverse flux out of the channel, the same as for a canal. 
 
5. Stepped canal 
 
Here we shall develop a general solution for a stepped canal, which will later be used 
to estimate the sinkage and trim of a ship in a channel of arbitrary cross-section. 
 
The geometry of this situation is shown in Figure 3. The channel configuration is 
assumed symmetrical, with the ship moving along the centreline. 
 

 
Figure 3: Cross-section through a ship in a symmetric canal with an arbitrary step depth change 
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This flow satisfies the following equations: 
- Laplace’s equation (equation 1) 
- Modified hull boundary condition (equation 2) 
- Wall boundary condition at sides of canal 
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- Continuity of free surface height across the step depth change, through continuity of 
the velocity potential φ . 

- Continuity of transverse flux 
y

h
∂
∂φ  across the step depth change. 

 
Since the flow is symmetric about 0=y , we shall consider only the region 0>y . In 
the channel region 2/0 chwy ≤≤ , the Fourier-transformed Laplace’s equation is 
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Together with the hull boundary condition (2), this has the general solution  
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In the outer region 2/2/ch wyw ≤≤ , equation (13) is also applicable, with h1 
replacing h. Combining this with the wall boundary condition (12), the general 
solution in the outer region is  
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Again, ( ) 22

1
2 1 kF−=λ , however for the canal the sign of λ  is immaterial since 

equation (15) is even in λ .  
 
Matching φ  at 2/chwy =  yields 
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Solving equations (16,17) simultaneously gives 
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Equation (14) is now inverted to find the velocity potential, whereupon the vertical 
force becomes 
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This can be written 
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As for the dredged channel, when flow in the outer region is critical ( 11 =F ), the flow 
within the channel is identical to that of a rectangular canal with width equal to the 
channel width.  
 
6. Numerical calculations 
 
As an example of these calculations, consider a MarAd L-series bulk carrier 
(Roseman 1987) at level static trim and beam/draft ratio of 4.4. This ship is travelling 
in water with the following transverse geometries: 
 
Configuration Example dimensions 
Open water valid for all Lh <<  
Rectangular canal  0.1/ =Lw , valid for all Lh <<  
Dredged channel  0.1/ch =Lw , 50.0/1 =hh , valid for all Lh <<  
Stepped canal 0.1/ch =Lw , 0.2/ =Lw , 50.0/1 =hh , valid for all Lh <<  
 
Calculated sinkage for these example cases is shown in Figure 4. The sinkage 
coefficient sc  is defined by  
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where LCFs  is the sinkage at the longitudinal centre of floatation, and ∇  is the ship’s 
displaced volume. This sinkage coefficient is used because it is predicted to be 
constant in open water, according to slender-body theory. 
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Figure 4: Calculated LCF sinkage coefficients for various example channel configurations 

 
Points to note from Figure 4 include: 
• The channel and canal sinkage coefficients are all larger than the open-water 

value, by an amount which depends on the geometry; these coefficients also vary 
with hF .  

• The dredged channel and stepped canal results both have critical flow in the outer 
region at 707.0=hF . Since the flow is critical, there is zero transverse flux out of 
the channel, and the channel behaves like a surface-piercing wall. Therefore the 
results coincide with the rectangular canal results at this point. 

• The dredged channel results are “cusped” when flow becomes critical in the outer 
region. This is because the depth change outside the channel generally exerts only 
a small influence on the ship squat, however a singularity occurs when the outer 
flow becomes critical. In this case the flow must match the canal flow according to 
linear theory, and the critical flow occurs over an infinite domain (from the edge 
of the channel out to infinity). A similar singularity occurs in open water at the 
critical speed. In both cases, nonlinearity and dispersion act to smooth the sinkage 
as a function of hF . Sample calculations have been done including the leading-
order effect of dispersion in the outer region, similar to the transcritical method 
described in Gourlay & Tuck (2001). Dispersion was seen to decrease and broaden 
the peak slightly. 

 



 

The trim coefficient θc  is defined analogously to the sinkage coefficient, with θ the 
change in bow-down trim angle in radians:  
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Figure 5: Calculated bow-down trim coefficients for various example channel configurations 

 
Figure 5 shows the calculated trim coefficient for the same example cases. We see 
that the trim coefficient is approximately constant for all of the different channel 
configurations. This is true up until supercritical flow occurs outside the channel, in 
which case the channel geometry affects the trim markedly. 
 
7. Effect of self-propulsion, viscosity and nonlinearity  
 
The methods used in this article neglect self-propulsion, viscosity and nonlinearity, so 
it is appropriate to comment on the qualitative effect these have on sinkage and trim. 
 
Self-propulsion creates a low-pressure region ahead of the propeller, which increases 
the sinkage slightly, and decreases the bow-down trim significantly. This effect was 
observed experimentally by Dand & Ferguson (1973), by comparing the sinkage and 
trim of towed and self-propelled models.   
 
Viscosity is important within a boundary layer next to the ship’s hull. This boundary 
layer is generally thin, but increases in thickness towards the stern. The character of 
the boundary layer is very different between model scale and full scale. At full scale 
(high Reynolds number), the boundary layer is naturally turbulent, thin compared to 



 

the ship dimensions, stays reasonably well attached, and exerts little influence on the 
pressures on the hull. At model scale (low Reynolds number), the boundary layer is 
artificially tripped to become turbulent, is thick compared to the ship dimensions, 
more likely to separate near the stern, and may markedly change the hull pressure 
near the stern.  
 
Self-propulsion also has the effect of re-energizing the boundary layer near the ship’s 
stern, so that separation is less likely at full scale and especially at model scale. 
Therefore, when self-propulsion is taken into account, there is better correlation 
between model-scale and full-scale sinkage and trim (Dand & Ferguson 1973). 
 
When the underkeel clearance is small, it is conceivable that viscous effects beneath 
the ship may affect sinkage and trim. However it was found in Gourlay (2006) that 
there is very little “blockage” effect due to the constriction beneath the hull. Instead, 
flow is simply diverted around the sides of the ship, causing a normal Bernoulli 
pressure drop on the sides of the ship, which then governs the pressure beneath the 
ship. Experimental sinkage and trim results showed no distinct “small-UKC” effect, 
beyond the normal increase due to decreased water depth. 
 
Nonlinearity should not significantly affect the sinkage and trim for slender ships such 
as frigates, however for containerships and bulk carriers it becomes increasingly 
important. The linear solution uses only the leading-order dynamic free surface 
boundary condition, assuming free surface displacements to be small. Higher-order 
terms for calculating the flow around a ship in a wall-sided canal have been included 
by Sharma & Chen (2000). Also, according to linear theory the ship is fixed in its rest 
position for calculating the flow, and then hydrostatic balancing is used to calculate 
sinkage and trim. In reality the sinkage increases the immersed volume of the ship, 
further disturbing the flow and increasing the sinkage. This effect was studied by 
Gourlay (2000) for ships in narrow canals. 
 
The towed model test results shown in Gourlay (2006) can be compared with the 
correct theoretical results for that canal, i.e. cs = 1.36 and cθ = 1.41. This shows that, 
for the MarAd L-Series hull, experimental LCF sinkage is 3 – 26% larger than that 
predicted, over a range of speeds and water depths. This is attributed to the neglect of 
nonlinear terms which are important for bulk carriers. In practice, the LCF sinkage 
coefficient can be tuned to better match the model test results. Bow-down trim is 13 – 
57% lower than that predicted, which is attributed to flow separation and decreased 
stern pressure at model scale. Theoretical trim results should be adjusted for the effect 
of self-propulsion in order to predict full-scale values.  
 
 
8. Approximate solution for a canal of arbitrary cross-section 
 
Here we shall develop an approximate method for calculating the sinkage and trim of 
a ship in a channel of arbitrary cross-section, by approximating the cross-sectional 
shape as two regions of constant depth joined by a step depth change.  
 
As seen in equation (7), slender-body theory predicts that channel width and depth are 
both independently important in a rectangular canal, and that increasing the ship 
speed amplifies the effect of finite channel width on squat. 



 

 
For a non-rectangular channel, we might expect that waterline width, cross-sectional 
area, and depth at the ship will be the most important factors governing the sinkage 
and trim. Waterline width couples with free surface deformation to govern flow 
continuity, and the effect of waterline width becomes increasingly important at higher 
Froude numbers, as the disturbance due to the ship spreads out further in the 
transverse direction. Decreasing cross-sectional area causes a blockage effect and 
tends to accelerate the flow. Having a larger water depth near the ship decreases the 
longitudinal flow speeds past the ship, diluting the hydrodynamic pressure and 
decreasing the squat. 
 
In order to gauge whether waterline width, cross-sectional area, and depth at the ship 
are the most important factors governing squat of a ship in a channel of arbitrary 
cross-section, we can use the results of Section 5 to do a sensitivity analysis on 
channels with different cross-sections. 
 
Consider the three channel configurations shown in Figure 6. Each of these is a 
stepped depth change as depicted in Figure 3, but all three are overlaid in the same 
diagram. 
 

 
 
Figure 6: Overlay of three different step depth change channel cross-sections, used for sensitivity 

study 
 
The three channel configurations all have the same waterline width, same cross-
sectional area, and same depth near the ship. We can calculate the squat of all three 
channel configurations, with the following example conditions in dimensionless form: 
 
Waterline channel width to ship waterline 
length ratio Lw /   

1.0 

Inner channel width to waterline channel 
width ratio ww /ch  

0.4, 0.6, 0.8  

Ratio of channel cross-sectional area to 
enclosing rectangle area 

0.85 

Ship type MarAd L-series bulk carrier (Roseman 
1987) 

 
Note that, for 8.0/ch =ww , the flow is supercritical in the outer region for 5.0≥hF .  
 
For comparison, results for a rectangular canal with the same cross-sectional area 
have also been calculated. Results are shown in Figure 7.  
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Figure 7: Sinkage coefficient for different channel configurations 

 
We can see that there is very little difference (less than 2%) between the different 
stepped channel configurations, indicating that different stepped channels tend to 
produce similar ship squat, provided their waterline width, cross-sectional area and 
depth at the ship remain constant. This is true whether flow in the outer region is 
subcritical, critical or supercritical (for this example, flow is supercritical in the outer 
region for 8.0/ch =ww  and 5.0>hF ). 
 
By contrast, results for a rectangular canal with the same cross-sectional area, but 
different waterline width, vary significantly from the stepped channel configurations 
at higher Froude numbers (up to 15% at 7.0=hF ). This shows that methods using 
just the channel cross-sectional area, but ignoring the waterline width, may give 
inaccurate results at higher Froude numbers. 
 
Analysis of equation (21) tells us that, if flow in the outer region is critical ( 11 =F ), 
the solution reduces to that of a canal of width chw , as happens for the dredged 
channel case (Section 4). Therefore we can approximate the squat of a ship in a 
stepped channel by relating this case to a channel of the same waterline width, cross-
sectional area and depth at the ship, but with critical flow in the outer region.  
 
It is hypothesized that the squat of a ship travelling along the centreline of a channel 
of arbitrary cross-section (still assumed roughly symmetric) can also be estimated 
using this method. The geometry of this method is shown in Figure 8. 
 



 

 
Figure 8: Approximating an arbitrary channel by a stepped depth change with critical flow in the 

outer section 
 

Suppose we know the waterline width w , cross-sectional area A and depth at the ship 
h of an arbitrary channel. Then the equivalent stepped channel has inner channel 
width wch and outer channel depth h*. These are found by equating the cross-sectional 
area: 
 *chch )( hwwhwA −+=       (24) 

and by requiring critical flow in the outer region: 
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This gives an effective channel width  
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This effective channel width weff can be used in the canal formulation (7), giving the 
approximation for arbitrary canal cross-section 
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9. Summary 
 
We have described a general Fourier transform method for calculating the squat of a 
ship travelling in open water, a rectangular canal, a dredged channel, a stepped canal 
or a channel of arbitrary cross-section. The dynamic vertical force is calculated using 
the following equation: 
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The bow-down trim moment is found replacing )(kB  by )(kxB  in the above 
equation, and steady sinkage and trim then follow hydrostatically. The function K(k) 
depends on the transverse geometry, and takes the values 
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